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Executive Summary 

1. Background and Objectives 

The objectives of this highly focused, 27-month, research-and-development 
project were the rapid development and the evaluation of a high-performance 
prototype of a new type of multicomputer that promised many advantages for 
defense applications. This architecture is called a two-level multicomputer 
because each node employs a primary processor for message handling and other 
runtime tasks, and one or more secondary processors for performing the user 
computation. 
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All of the shaded blocks in the diagram above are contained within a single 
custom-VLSI chip, a microarchitecture called the "LANai" (see section 2.1 
below). Structurally, then, the node is simpler than the block diagram above: 
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The specific, anticipated advantages of this node architecture include: 

•   low software overhead in message handling, because the primary processor 
is dedicated to packet handling and other runtime functions, so that the 
secondary processors can concentrate on the user's computation; 



high performance per unit cost, power, and size, due to the efficiency of the 
architecture and the level of integration in its implementation; 

very rapid hardware and software development of nodes that exploit the 
latest processor chips as the secondary processor, inasmuch as most of the 
hardware components and system software in the primary-processor part of 
the node is the same for different secondary processors; and 

the ability to support heterogeneous configurations in embedded 
applications, including configurations that support high-data-rate network 
connectivity to sensors and to other systems. 

2. Approach and Results 

The two-level-multicomputer architecture was conceived and studied by the 
same group of researchers in earlier DARPA projects at Caltech and Myricom. 
Although the architecture promised many advantages over previous 
multicomputers, it needed to be evaluated by designing and constructing a 
prototype, including its programming system, and by applying the prototype to 
applications representative of defense missions. 

2.1 The SAN Chipset 

The two-level multicomputer employs commodity processor, memory, and logic 
chips together with three custom-VLSI chips - the System-Area Network (SAN) 
chipset - whose design, fabrication, and characterization were the major focus 
of the first 15 months of this effort. 

• The LANai network-interface chip, which includes a 32-bit RISC, and its 
associated fast SRAM form the first level of the multicomputer nodes. The 
original plan called for two versions of the LANai chip, one with a 32-bit E 
bus (the LANai 4), and one with a 64-bit E bus (the LANai 5). 

• High-degree, cut-through, switch chips (called XBar chips) form the 
multicomputer message-passing network. 

• A Myrinet-inierface chip (called MI chips) with integrated low-voltage 
differential signaling line drivers and receivers allows long-distance finks 
and connectivity to Myrinet LANs. 

The target performance for the SAN or LAN links was for them to carry packet 
data at a full-duplex rate of 1.28+1.28 Gigabits/second. 



The SAN chipset design, fabrication, and characterization were all 
completely successful, including achieving all functional capabilities and 
performance targets. The design, fabrication, and characterization of the 
LANai 4, 8-port XBar (XBar8), and MI chips were all completed by December 
1995, 15 months into the contract. The LANai 5 chip was designed and was in 
fabrication at the completion of the contract (chips received in January 1997), 
and was characterized under a subsequent DARPA contract. 

The LANai chips are advanced descendants of the nodes of the "Mosaic" 
multicomputer that our research group designed and built at Caltech. The 
LANai includes all of the mechanisms pioneered in the Mosaic for streamlined 
message handling. 

Appendix A is the documentation of the LANai 4 chip. 
Appendix B is the documentation of the LANai 5 chip. 

Current versions of these documents are linked from 

http://www.myri.com/vlsi/ 

2.2 VME Packaging and the Message-Passing Network 

The prototype multicomputer components are packaged on 6U VME boards that 
are inserted into standard VME subracks. This was not the form of packaging 
originally proposed, but was adopted upon the suggestions of the DARPA 
program managers in order to assure compatibility with prototypes produced 
under other DARPA and DoD projects. 

Connections to 
workstations, 
workstation clusters, 
other computers, or 
other multicomputers 

to other local 
switches 

Multicomputer 

In the diagram above, multiple nodes may be connected by the "Local Switch" 
on a single VME board. For flexibility in the prototype, some of the SAN 
message-passing-network ports for a VME board are on controlled-impedance 
connectors on the VME front panel. These ports are connected through 



microstrip cables to ports of SAN switches, which are also packaged in the 
VME form factor. 

However, it was important to find an alternative to the front-panel cables, 
which interfere with board swapping, and would be disallowed in, for example, 
VME subracks in submarines. Myricom joined with CSPI, a company with 
experience in supplying VME signal-processing equipment for defense 
platforms, in developing and characterizing the first prototypes of backplane- 
overlay switches that employ a new, extra, "PO" connector in VME systems. 

Appendix C is a slide presentation illustrating this packaging scheme. 

As also indicated in the diagram above, individual VME subracks can in turn 
be connected to each other and to workstations or other computers through 
Myrinet "network switches" in a Myrinet local-area network. 

In spite of our initial skepticism about the use of VME packaging, this 
"Myrinet-on-VME" packaging developed in the project was extremely 
successful, being widely adopted by other DARPA projects, and now 
commercially. In fact, "Myrinet on VME" became a draft standard (VITA-26) 
developed by the VITA Standards Organization (VSO) of the VME International 
Trade Association, and is now an American National Standard (ANSI/VITA 26- 
1998, Myrinet on VME Protocol Specification). The draft standard is linked 
from both http://www.myri.com/open-specs/ and http://www.vita.com. 

Appendix D, chapter 7, includes a detailed description and photographs 
of the VME packaging used in the prototype two-level-multicomputer 
hardware. 

2.3 Types of Prototype Nodes 

Myricom's original plan for this research proposed a selection procedure for 
developing, programming, and demonstrating different types of two-level- 
multicomputer nodes with different commodity processors for the second level, 
including, for example: 

• RISC nodes 

• floating-point DSP nodes 

• integer DSP nodes 

The structure of the two-level-multicomputer node and its software allows a 
newly introduced processor chip to be designed quickly into a new node type. 



For the hardware, the first level is implemented simply with a LANai chip and 
SRAM, and needs only to be interfaced to the bus of the second-level processor. 
For the software, the system software and network protocols are standardized 
in the first-level processor. Each type of secondary processor requires only a 
compiler and a small library. 

One of the major "revelations" of this research came about from following the 
thread of the argument above to its limits. Because the secondary processors 
do not require a runtime or operating system, they can be simple, low-cost, 
low-power, performance-oriented devices that do not even need to be able to 
execute a program in the conventional sense. They could, for example, be 
vector arithmetic units, without a "CPU." The most interesting technological 
possibility is that the secondary processors coiM be field-programmable gate 
arrays (FPGAs) that are dynamically configurable from the first-level processors. 
Thus, several months into this project, we added 

•   dynamically configurable FPGA nodes 

to the list of node types. 

One way to summarize the main hypothesis of this research, albeit somewhat 
flippantly, is that the Principal Investigator offered this "challenge" at a 
number of DARPA meetings: "Give us a new processor with a C compiler, and 
in four months we'll be able to show you this processor running user programs 
in a two-level multicomputer." 

The hypothesis of this research was proven even more convincingly, 
because not only did Myricom develop two-level-multicomputer nodes, but 
also engineering groups at other companies and research organizations. 

RISC nodes. Myricom developed, programmed, and demonstrated RISC nodes 
more easily than was expected when this work was proposed. The introduction 
of VME single-board computers (SBCs) that accepted PCI interfaces in the "PCI 
Mezzanine Card" (PMC) form factor was identified by the Sandia ATR research 
team as their preferred approach; hence, we developed a PMC version of 
Myricom's commercial Myrinet-SAN/PCI interfaces together with VME-form- 
factor Myrinet-SAN switches, both for our own use and for Sandia's use. The 
SBCs used in these early experiments were Motorola MVME-1602 PowerPC 
boards, the same as those that were being used by Sandia. 

By the time we were ready to develop a more highly integrated VME board with 
multiple RISCs (e.g., PowerPCs) on each VME board, CSPI had committed to 
developing this board as a product. We learned of CSPI's product plans under 
a non-disclosure agreement, but with CSPI's permission we reported the 
substance of these plans to our DARPA and Rome Labs contract management. 
We all agreed that our developing such a prototype would be redundant, and 



that our efforts would thus be better spent on the more innovative FPGA 
nodes. 

The end results of the RISC-node efforts are also described in section 3 on 
technology transition. 

Floating-point DSP nodes. As soon as this contract was awarded, the 
Myricom research team was introduced by the DARPA management to Bob 
Graybill and members of his research team at Martin Marietta Labs (MML). 
Bob and his team had proposed to DARPA a specific "High-Performance 
Scalable Computing" (HPSC) project based on Analog Devices SHARC floating- 
point DSPs, but employing a much lower performance and less uniform 
network. When Bob Graybill and his group saw Myricom's plans, they 
proposed to use our technology, to which Myricom and DARPA agreed. Thus, 
the MML team (which was moved to Lockheed-Martin Sanders after the 
Lockheed, Martin-Marietta merger) took on the development of the two-level- 
multicomputer nodes with floating-point DSP secondary processors. 

This Sanders HPSC effort was highly successful, not only in developing 
working, high-performance, quad-SHARC nodes that interoperated correctly 
over Myrinet with other two-level-multicomputer prototypes and with 
workstations, but in their system software developments, MPI middleware, and 
prototype application programs. 

The successes of the HPSC efforts demonstrated that the Myricom and Sanders 
teams worked well together. A close collaboration was necessary, inasmuch as 
the HPSC modules were developed to employ LANai 4 and XBar8 chips that 
were being designed and characterized concurrently with the HPSC board 
designs and software. 

Other end results of this Myricom-Sanders effort are described in section 3 on 
technology transition. 

Integer DSP nodes. The inclusion of integer DSP nodes in our original 
planning was stimulated in part by the announcement of the TI C80, a DSP 
chip that promised ~1 Gop/s performance. Some preliminary designs of a C80- 
based two-level-multicomputer node were done, but our evaluation of the C80 
software and an assessment of there being no technology-roadmap future for 
the C80 persuaded us and the DARPA management that this effort was not 
justified. 

Dynamically reconfigurable FPGA nodes. The developed two-level- 
multicomputer hardware and software infrastructures made the design of FPGA 
nodes and their integration into the programming environment relatively 
straightforward. The research issues were the choice of an appropriate 
application, and the programming (generating the configuration) of the FPGAs. 



We recognized that FPGA nodes had the potential of offering uniquely high 
performance per cost, power, and size, but only over a narrow range of 
applications. The silicon-area and performance penalties for logic to be field- 
programmable are such that FPGAs cannot compete with RISCs or DSPs by 
being programmed to be RISCs or DSPs. In fact, we conjecture that the 
application span over which FPGAs can provide higher performance than 
custom-silicon RISCs and DSPs are computations offering high degrees of 
concurrency, and in which the data types are those that are not native to 
RISCs and DSPs (e.g., not just integer and floating-point operands and 
results). 

Other than their limited application span, the other disadvantage of 
dynamically reconfigurable FPGAs as computing devices is that, at least with 
present tools, the "programming" of an FPGA is perhaps one to two orders of 
magnitude more difficult and time-consuming than it would be to express the 
same computation as a sequential program. 

We expect from our own experience that the application-span and 
programming-difficulty disadvantages of FPGAs as computing devices will limit 
their use as computing devices in the commercial world. For certain 
computations, however, they seem to offer advantages in cost, power, and size 
that would make them attractive for defense applications. 

What are these applications? In order to "prove the point," we selected as a 
test and demonstration application an Automatic Target Recognition (ATR) 
algorithm developed by a DARPA research project at Sandia National 
Laboratory. This application and Myricom's implementation of this 
computation are described in section 2.5 below, and in detail in Appendix D. 

2.4 Programming System 

The programming system developed for the two-level multicomputer is based on 
Objective C. Earlier efforts based on C++ demonstrated that concurrent 
extensions of object-oriented programming systems are highly effective; 
however, Objective C was selected over C++ due to much easier compiler 
development and maintenance. 

Myricom completed the first software distribution of its Objective-C based Lyric 
programming system, and in February 1996 hosted the first meeting of the 
Myricom Multicomputer User's Group. This meeting was aimed at stimulating 
the development of application programs by other research groups. The meeting 
attracted forty attendees from DARPA, Hughes, Lockheed Sanders, Sandia, 
USAF Rome Labs, Mississippi State University, Caltech, USC, and USC/ISI. 
Myricom researchers presented a project overview and the Lyric programming 



system, and Tony Skjellum of MSU presented the MPI extensions of Lyric. 
Most of the material presented at the meeting is available at: 

http: / /www.myri.com/research/darpa/multicomputer_users/ 

When the two-level multicomputer acts as a network server, application 
modules written in Objective C can be invoked through the network remote- 
procedure-call (RPC) mechanism employed by many high-level and application- 
specific programming systems, or by using the functions of the Message Passing 
Interface (MPI) standard. In this connection, project researchers contributed to 
the development of the IETF "PacketWay" standard for interoperability between 
high-performance packet networks, both those within a multicomputer and 
those that connect heterogeneous networks of computers. 

2.5 ATR Challenge Application 

As noted above, Myricom researchers selected as a test and demonstration 
application an Automatic Target Recognition (ATR) algorithm developed by a 
DARPA research project at Sandia National Laboratory. The defense mission 
driving this research is the synthetic-aperture radar (SAR) surveillance 
performed by the Joint STARS. In this mission, the radar produces SAR 
images of a very large number of objects distributed across a thousands of 
square miles. The ATR task is to identify those images that would be of 
military significance, such as a tank, a fuel truck, or a missile launcher. 

The kernel ATR computation following sensor processing, "focus of attention" 
(FOA), and second-level detection, is a binary image correlation of the SAR 
image against a database of objects. This database would, for example, include 
the templates for each of several types of tanks, and the templates for each 
tank would be represented at any orientation within several-degree increments. 
Because there are so many SAR images and so many templates, the 
computation is highly concurrent. This mission can benefit from a nearly 
open-ended computational capacity. 

The Sandia ATR research team set up their computing problem as a "defense 
challenge application" by publishing the basic algorithms, and by providing 
sanitized versions of a set of templates. The performance of ordinary 
platforms, such as a PowerPC running a reference, C-program version of the 
algorithm, are known, and are expressed in templates per second per node 
rrSN). The Myricom FPGA-node implementation achieved 1316 TSN by 
benchmark measurements, compared with -750 TSN for a (contemporary) 
200MHz PowerPC. The actual "bottom-line" metric is templates per second per 
VME slot, and, because there are 4 FPGA nodes per VME slot in this prototype 
implementation, but only one PowerPC per slot in a contemporary SBC, the 
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FPGA node implementation exhibited higher performance per VME slot by a 
factor of ~7. 

As noted in the report in 

Appendix D, "Scalable, Network-Connected, Reconfigurable, Hardware 
Accelerators for an Automatic-Target-Recognition Application" 

there are many other algorithmic optimizations that could improve the 
performance to -2500 TPN with the same hardware. 

Although the performance of both RISCs and FPGAs continues to escalate, we 
expect that, when comparing hardware of the same year, the FPGA-node 
approach to the binary-image correlation will continue to exhibit about an 
order of magnitude higher performance per VME slot, and there appear to be 
many other computations that could benefit from this approach. 

3. Technology Transition 

Technology transition was integrated throughout this project, from the SAN 
chip set, to the two-level multicomputer, to its programming systems, to its 
applications. We list here with some pride the impact that Myricom's two- 
level-multicomputer project has had on defense, research, and commercial 
computing. 

Myrinet Products. Myricom itself uses the SAN chipset in its Myrinet 
products, which are widely used in cluster- and distributed-computing projects 
and products. For example: 

• The UC Berkeley NOW, a DARPA project, is a cluster of SPARC workstations 
with Myrinet. This cluster has achieved sub-1 Ops latencies between UNIX 
processes under their Active Messages implementation, and holds both of 
the world records for sorting. 

• The "hotbot" (www.hotbot.com) search engine produced by Inktomi 
Corporation, a commercial spinoff of the Berkeley NOW project, has been 
reported by several independent benchmarks to be the world's fastest Web- 
search engine. Hotbot is a Myrinet cluster of SPARC workstations. 

• NSWC Dahlgren has been evaluating Myrinet for distributed computing for 
AEGIS ships using actual engagement codes. In earlier tests, Myrinet 
exhibited the highest data rates and lowest latencies of all of the LANs 
tested. 



• Several DoE ASCI (Accelerated Strategic Computing Initiative) projects 
employ large Myrinet clusters in support of the ASCI nuclear stewardship 
mission.  (The largest of these clusters today consists of 400 DEC-Alpha 
hosts.) 

• The system-level integration of the ATR testbed at Sandia National 
Laboratory is a Myrinet that connects components in both the SAN and LAN 
forms. The following is a photograph of the Sandia ATR testbed in its 
shipping crate, ready to be sent to fly on the Joint STARS. The upper VME 
subrack carries PowerPC SBCs connected by Myrinet-SAN cables (which 
have red tags because they are carrying classified data). The lower VME 
subrack carries several Lockheed Sanders HPSC SHARC boards. This 
system is connected by Myrinet-LAN links to external workstations. 

The SAN chipset. Myricom supplies SAN-chipset chips, either packaged and 
tested or as bare die, to other DARPA contractors as required. Lockheed 
Sanders uses these chips both in the VME HPSC boards used in the system 
above, and also in modules that are planned for several insertion projects. 
Projects at the Universities of Utah and Virginia are designing specialized 
Myrinet interfaces that employ Myricom chips. Myricom is also supplying 
board-level and chip-level multicomputer components to Hughes (Raytheon). 

The two-level-multicomputer architecture. Myricom worked actively with 
several VME-processor manufacturers to use the two-level-multicomputer 
architecture and components to provide scalable, high-performance 
interconnect for VME systems. These VME companies are suppliers to military- 
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system companies and to the services of high-speed computing and signal 
processing systems. 

The first of these VME companies to develop and ship two-level-multicomputer 
products was CSPI. The following is a photograph of a CSPI quad-PowerPC 
two-level-multicomputer VME board, introduced in early 1997 (shortly after the 
completion of this contract), the first commercial two-level-multicomputer 
product. 

These CSPI products interoperate fully with Myricom's Myrinet products, and 
the programming system for these CSPI signal-processing boards was patterned 
closely after the Myricom software. 

Thus, the two-level-multicomputer technology, architecture, and software was 
transitioned almost immediately into commercial practice and COTS 
availability. 

11 



The LANai 4 is a programmable communication device that provides an interface to the Myrinet system-area network 
(SAN). 

As illustrated below, a LANai 4 chip consists of the LANai core, with an instruction-interpreting processor and 
a packet interface, the Myrinet-SAN interface, and the EBUS interface. 

The Local Bus (LBUS) is an interface to asynchronous static SRAMs. The External Bus (EBUS) is a synchronous 
interface. 

Myrinet SAN 

Link Interface 
LANai4 

LANai core 

32-bit Packet Interface 

 __  

c 
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±^y 

32-bit EBUS Interface 
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MEMORY INTERFACE 

In the remainder of this specification, we shall refer to 8-bit data units as bytes, to 16-bit units as half-words, and 
to 32-bit units as words. Although the internals of the LANai 4 chip support 32-bit addresses, pin-count limitations 
restrict the LBUS to a maximum of IM bytes. 

The LBUS operates at twice the chip-clock speed — there are two memory cycles for every clock cycle. The 
external-access bus (EBUS), the packet-interface receive DMA, and the packet-interface send DMA each request a 
maximum of one memory access per clock cycle. The on-chip processor requests up to two memory accesses per clock 
cycle (instruction and data). The available memory cycles within each clock cycle are assigned based on the following 
priority (highest to lowest): EBUS, receive DMA, send DMA, and the processor. Since every EBUS memory request 
is granted, the LANai 4 chip along with the memory on its LBUS appears as a block of synchronous memory when 
observed from the EBUS. 

Both the LBUS and the EBUS addresses are byte addresses, and the byte order is big-endian (the most-significant 
byte is stored at the lowest byte address). 

The word and half-word memory accesses on the LBUS must be aligned; any least-significant bits of an address 
that would make a memory access non-aligned are ignored. 

The LANai chip provides a rudimentary memory-protection mechanism that allows a memory segment of pro- 
grammable size to be write-protected from the LANai core, i.e., writable only from the EBUS (page 6). 

Although the LANai core cannot access the EBUS directly, the on-chip processor can initiate a data transfer 
between the LBUS and the EBUS (page 5). The LANai EBUS interface is simple and generic, and extra hardware 
is necessary to connect it to any standard bus. 
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PACKET SENDING 

Please consult pages 13 through 15 for a set of send and receive examples. 
A data-communication, flow-control unit is called a flit, and consists of eight data bits plus a tail bit. Packets are 

of arbitrary length (in flits), and the tail bit marks the last flit of every packet. The byte order in the communication 
network is big-endian, i.e., the most significant byte of a word (or of a half-word) appears first in the network. 

After the LANai 4 chip is out of reset, and prior to any Myrinet-network access, the TIMEOUT, MYRINET, 
and WINDOW special registers (page 7) must be initialized. 

Packets are injected into the Myrinet network by accessing the following special registers: 

Register Description 

SB 

SH 

SW 

ST 

SMP 

Send Byte: The least-significant byte of the value written into SB is ap- 
pended to the outgoing packet. SB must not be written unless the send_rdy 
bit of the special register ISR is set. 
Send Half-Word: The least-significant half-word of the value written into 
SH is appended to the outgoing packet (high-order byte first). SH must 
not be written unless the sencLrdy bit of the special register ISR is set. 

Send Word: The word written into SW is appended to the outgoing packet 
(most-significant byte first). SW must not be written unless the send-rdy 
bit of the special register ISR is set.  
Send Tail: Writing ST completes the outgoing packet. If the CRC-8 is 
not enabled (page 7), the tail flit contains the least-significant byte of the 
value written into ST. If the CRC-8 is enabled, the tail flit contains the 
CRC-8 for the packet, xor-ed with the least-significant byte of the value 
written into ST. ST must not be written unless the sentLrdy bit of the 
special register ISR is set. 

SA 

SML 

SMLT 

Send-Message Pointer: Address of the first word of the send-DMA mem- 
ory buffer. This register is incremented by 4 by the packet interface as each 
word is appended to the outgoing packet, and, upon completion, equals 
SML+4.   
Send-Message Align: The two least-significant bits of this register spec- 
ify how many leading flits (0-3) of the contents of the next-specified send- 
DMA memory buffer should NOT be appended to the outgoing packet. 
This register may be used to keep the payload portion of the message 4- 
byte aligned, even when the length of the routing header is not a multiple 
of 4. Only the first send DMA following a write into this register is affected. 

Send-Message Limit: Writing this register initiates a send DMA that 
appends to the outgoing packet, one word at a time, the contents of the 
memory buffer starting with the word at address SMP (except for the lead- 
ing bytes, if specified by SA) and ending with the word at address SML 

Send-Message Limit, with the Tail: The same as SML, and, in addi- 
tion, completes the outgoing packet by appending a tail flit with its data 
field equal to the CRC-8 byte for that packet. , 

Upon completion of a send DMA, the send-int bit of the special register ISR is set (page 10). 
Since the send DMA accesses 32 bits at a time, the send memory buffer must be aligned on a word boundary. 

Hence, the two least-significant bits of SMP and of SML(T) are hard-wired to zero. 
SA is a write-only register, and reading it produces an undefined value. Reading any other send register is a valid 

operation, but one should note that SML and SMLT are stored in the same physical register. If any of the send 
registers are written during a send DMA, the resulting behavior is undefined. 
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PACKET RECEIVING 

Please consult pages 13 through 15 for a set of send and receive examples. 
A data-communication, flow-control unit is called a flit, and consists of eight data bits plus a tail bit. Packets are 

of arbitrary length (in flits), and the tail bit marks the last flit of every packet. The byte order in the communication 
network is big-endian, i.e., the most significant byte of a word (or of a half-word) appears first in the network. 

After the LANai 4 chip is out of reset, and prior to any Myrinet-network access, the TIMEOUT, MYRINET, 
and WINDOW special registers (page 7) must be initialized. 

An incoming packet is accepted from the network by accessing the following special registers: 

Register Description 

RB 

RH 

RW 

Receive Byte: Reading RB, an 8-bit special register, consumes one byte 
off of the incoming packet. RB must not be read unless the byte_rdy bit of 
the special register ISR is set. 
Receive Half-Word: Reading RH, a 16-bit special register, consumes one 
half-word off of the incoming packet (the first byte consumed becomes the 
most-significant one). RH must not be read unless the halLrdy bit of the 
special register ISR is set.  ^  

RMP 

RML 

Receive Word: Reading RW, a 32-bit special register, consumes one word 
off of the incoming packet (the first byte consumed becomes the most- 
significant one). RW must not be read unless the worcLrdy bit of the 
special register ISR is set. 
Receive-Message Pointer: Address of the first word of the receive-DMA 
memory buffer. This register is incremented by 4 by the packet interface 
as each word is written into the buffer. After an entire packet has been 
received, RMP points to the first aligned word past the end of the packet. 

Receive-Message Limit: Writing RML enables a receive DMA and in- 
structs the packet interface to put the (remainder of the) incoming packet, 
one word at a time, into the memory buffer that starts at RMP and ends 
at RML. When the CRC-8 is enabled (page 7), if the message arrives with 
the correct CRC-8, zero is written into the last byte of the message.  

When an entire incoming packet has been transferred into the receive memory buffer, the recv_int bit of the 
special register ISR is set (page 10). If the receive memory buffer has been exhausted (the last word written is at 
the location pointed to by RML, and RMP=RML+8), buffint bit of ISR is set. After a receive DMA is initiated, 
one must not initiate another receive DMA until the recvJnt bit, the buffint bit, or both, have been set set. 

Since the receive DMA accesses 32 bits at a time, the receive memory buffer must be aligned on a word boundary. 
Hence, the two least-significant bits of RML and of RMP are hard-wired to zero. 

It is possible to read past the tail flit of the incoming packet (with RH, RW, or receive DMA). In such cases, 
the packet following the currently accessed packet is guaranteed not to be corrupted. The orun_bits of the special 
register ISR show how many flits past the tail flit have been read (page 10). The bytes corresponding to the flits 
past the tail flit are undefined. 

RB, RH, and RW are not physical storage registers, and writing any of them is a vacuous operation. Reading 
RMP or RML is a valid operation. If any receive operation is initiated during a receive-DMA transfer, the resulting 
behavior is undefined. 
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EBUS-LBUS DATA TRANSFER 

In the typical operating regime, a LANai 4 chip operates as a slave device on the EBUS. In this regime, the LANai 4 
chip along with the memory on its LBUS appears as a block of synchronous memory when observed from the EBUS. 

The LANai 4 chip incorporates a DMA engine that can be instructed to perform data transfer between the LBUS 
and the EBUS, and, in this regime only, the chip acts as a master on the EBUS. The LANai EBUS interface is simple 
and generic (page 23), and extra hardware is necessary to connect it to any standard bus. 

The EBUS-LBUS DMA engine is controlled by the following 32-bit, special registers: 

Register Description 

LAR 

EAR 

DMA.CTR 

DMAJSTS 

LBUS Address Register: Points to the beginning of the DMA buffer on 
the LBUS. This register is incremented by 4 as each word is transferred, 
and, upon completion, points to the first word past the LBUS DMA buffer. 

EBUS Address Register: Points to the beginning of the DMA buffer on 
the EBUS. This register is incremented by 4 as each word is transferred, 
and, upon completion, points to the first word past the EBUS DMA buffer. 

DMA Counter: Writing a non-zero value into the DMA.CTR register 
initiates a DMA transfer. This register is decremented by 4 as each word 
is transferred, and equals 0 upon completion. 

EBUS-LBUS DMA Burst Sizes: The four least-significant bits of this 
register specify the allowed burst modes of the EBUS interface. 

Bit Description 
3 Enables 64-byte bursts 
2 Enables 32-byte bursts 
1 Enables 16-byte bursts 
0 Enables 8-byte bursts 

EBUS-LBUS DMA Direction: The least-significant bit of this register 
controls the direction of the EBUS-LBUS DMA transfer. 

DMA-DIR Bit 0 DMA Direction 
0 LBUS-J-EBUS 
1 EBUS->LBUS 

Upon completion of an EBUS-LBUS DMA the dmaint bit of the special register ISR is set (page 10). 
Since the EBUS DMAs transfer 32 bits at a time, the LBUS memory buffer must be aligned on a word boundary. 

Hence, the two least-significant bits of DMA.LAR and of DMA.CTR are hard-wired to zero. 
The DMAJ3TS and DMA_DIR are write-only registers, and reading either of them produces an undefined values. 

Reading any other register is a valid operation. Writing any of the above registers during an EBUS-LBUS DMA 
transfer may result in violation of the protocol on the I/O bus that the EBUS connects to. 

INTERNET-CHECKSUM COMPUTATION 

The LANai 4 chip includes a mechanism to compute a partial Internet checksum. The partial checksum is stored in 
the special register CKS. 

Register 

CKS 

Description 

Internet-Checksum Register: This register is modified as a side ef- 
fect of the EBUS-LBUS DMA transfers. Upon completion of an EBUS- 
LBUS DMA transfer, the CKS register contains the result of the 32-bit, 
l's-complement addition of its initial value and the values of all transferred 
data items (the DMA engine transfers 32-bit data items only). 

A typical 16-bit-Internet-checksum computation consists of: writing zero into CKS; performing one or more 
EBUS-LBUS DMA transfers; and, adding the most- and least-significant half-word of CKS (in software) using l's 
complement addition. 

Writing the CKS register during an EBUS-LBUS DMA transfer may corrupt the checksum computation. 
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COUNTERS/TIMERS 

There are two real-time counters on the LANai 4 chip, both of which use the time reference that is equal to 40 times 
the period of the transmit clock of the Myrinet-SAN interface (page 33). Nominally, this is an 80 MHz clock, so the 
time reference is equal to 1/2 microsecond. 

Register 

RTC 

IT 

Description 

Real-Time Clock:  This is a 32-bit counter that is incremented every 
time-reference period. 
Interrupt Timer: This is a 32-bit- counter that is decremented every 
time-reference period. Whenever this counter makes a transition from 
0x00000000 to OxFFFFFFFF, the time_int bit of the special register ISR 
is set (page 10). Whenever it makes a transition from 0x80000000 to 
0x7FFFFFFF, the wdogint bit of ISR is set. ^  

MEMORY PROTECTION 

The LANai 4 chip provides a rudimentary memory-protection mechanism that allows a memory segment of pro- 
grammable size to be write-protected from the LANai core, i.e., writable only from the EBUS. 

Description 

Memory Protection: If the WE (Write Enable) bit is 1, the LANai is 
allowed to write to any memory location (no memory protection). Upon 
reset, this is the default value of the WE bit. 
If the WE bit is 0, the A12-A19 bits (the A bits) define the region(s) of 
memory in which the LANai core is allowed to write: a write to a memory 
location is allowed if a bit in the address of that memory location is 1 and 
the corresponding A bit is 1. 

Bit 31 30 29 28 27 26 25 24 
Name WE 

Bit 23 22 21 20 19 18 17 16 
Name - - - - A19 A18 A17 A16 

Bit 15 14 13 12 11 10 9 8 
Name A15 A14 A13 A12 - - - - 

Bit 7 6 5 4 3 2 1 0 
Name 

A typical use of this mechanism is to write-protect a memory segment at the bottom of the memory (where the 
code for the LANai processor is usually kept), and allow writes to addresses up to the highest available memory on 
the LBUS. 

For example, writing the value 0x0007E000 to the MP special register write-protects the lowest 8KB and allows 
writes to addresses up to 512KB-1. 

Pin-count limitations restrict the LBUS of the LANai 4 chip to a maximum of IM bytes. 
The MP special register is a write-only register, and reading it produces an undefined value. 
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CONFIGURATION 

Register Description 

TIMEOUT 

WINDOW 

MYRINET 

DEBUG 

CLOCK 

Incoming-Message Blocking Timeout: the two least-significant bits of 
the TIMEOUT special register specify the timeout period of the LANai 
watchdog timer. If the LANai 4 chip fails to consume an incoming message 
from the network for the duration of the timeout period, the watchdog 
timer sets the nres-int bit of the special register ISR (page 10), and, if the 
NRES-ENABLE bit of the special register MYRINET is set, it resets the 
LANai chip. 

Value Timeout Period 
0 1/16 second 
1 1/4 second 
2 1 second 
3 4 seconds 

SAN-Link Sampling Window: The two least-significant bits of this 
register select the width of the character-time window for the input section 
of the Myrinet-SAN interface. After the chip is out of reset and prior to any 
Myrinet access, the value 3 must be written to this register, and a minimum 
of 10 milliseconds must be allowed for the SAN link to reconfigure. 

Myrinet-Link Configuration: The three least-significant bits of this 
register enable the error-handling features of the Myrinet-SAN interface. 
After the chip is out of reset, this register must be written prior to any 
Myrinet access. 

Bit Name Description 

0 NRESJENABLE 

When the LANai 5 chip fails to consume an 
incoming message for the duration of the pe- 
riod selected by the TIMEOUT register, the 
nresJnt bit of the special register ISR is set 
(page 10). If the NRES_ENABLE is set, the 
chip will be reset when the nres-int bit is set. 

1 CRC8.ENABLE Enables the CRC-8 computation. 

Hardware-Debug Register: The four least-significant bits of this regis- 
ter select one of 16 internal signals to be output on the WIN pin, for timing 
observation. 
Internal-Clock Phase-Adjusting Register: This special register con- 
trols the on-chip clock generation. During the power-on reset, the system- 
specific value must be written to this register from the EBUS (page 12). 
This register may be modified only while the chip is in reset (page 21). 

PROGRAMMABLE OUTPUTS 

Register 

LED 

Description 

LED Register: Bits 0 of this special register is driven to the LED output 
pin. Bits 1 through 10 of this special register are driven to the GO through 
G9 output pins. 

The special registers described on this page are write-only registers, and reading any of them produces an undefined 
value. 
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INTERRUPTS 

Register Description 

ISR 

IMR 

EIMR 

Interrupt Status Register: Contains the chip-status information. 

The ISR bits with the .sig (signal) postfix are included for simple host- 
LANai communication. A signal bit can be set only by the LANai processor 
and reset only from the EBUS, or vice versa. 
The ISR bits with the jdy (ready) postfix are maintained by the packet 
interface, and cannot be modified by the programmer. However, when 
such a bit becomes 1, the packet interface may reset it only as a result of a 
bit-specific request to the packet interface. 
The ISR bits with the Jnt (interrupt) postfix are set by the packet interface 
or the EBUS interface when their corresponding events occur. These bits 
can be reset directly — by writing a 1 into them, or indirectly — in a 
bit-specific way. 
Interrupt Mask Register: When a bit of ISR is equal to 1 and the 
corresponding bit of IMR is equal to 1, an interrupt request is asserted for 
the on-chip processor. 
External-Interrupt Mask Register: When a bit of ISR is equal to 1 
and the corresponding bit of EIMR is equal to 1, the INT output pin is 
asserted.  

Accessing some special registers has a side effect on the ISR. There is up to three-assembly-instructions delay 
between the time when a special register is accessed and the time of the change of the corresponding ISR bit(s). 
In case of tight polling loops, this delay can result in a race condition, whereby the program could, for example, 
misinterpret a not-yet-cleared ISR Jnt bit for an indication of a new event. The following tables specify which 
special-register access affects which ISR bits, and the maximum possible delay (in assembly instructions): 

Writing Clears      | May Clear  | 

DMA.CTR dmaJnt (1) • 

rr timeunt (1) 
wdogJnt (1) • 

RML 

byte-rdy (2) 
halLrdy (2) 
wordjdy (2) 
buffint (1) 

orun2-int (1) 
orunl-int (1) 
recv-int (1) 

• 

SML, SMLT 
sencLrdy (2) 
send-int (1) • 

SB, SH, SW, ST ■ 
send-rdy (3) 

Reading Clears May Clear May Set 

RB, RH, RW 
orun2Jnt (1) 
orunl-int (1) 
tail-int (1) 

byte-rdy (3) 
half j:dy (3) 
wordjrdy (3) 

orun2-int (3) 
orunl-int (3) 
tailint (3) 
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The ISR, IMR, and EIMR consist of the following bits (bit 31 is the most significant): 

Bit Name Description 

31 

30 

29-24 

23-16 

15 

debug_bit 

host-sig 

lan7_sig - 
lanO-sig 

word-rdy 

14 

13 

12 

halLrdy 

This bit is always equal to 1, and can be used for single-stepping the code that runs in user 
context (page ??).  ^^^^ 

send-rdy 

This bit is set when the LANai processor writes a 1 into it, and reset when a 1 is written into it 
from the EBUS.  ___ 
Reserved. 
Each of these 8 bits is set when a 1 is written into it from the EBUS, and reset when the LANai 
processor writes a 1 into it.  

This bit is maintained by the packet interface and is equal to 1 if: (1) there are at least four flits 
of the same packet on the incoming channel, or (2) the first, the second, or the third available flit 
on the incoming channel is a tail. In either case, the word_rdy bit indicates that an RW operation 
can be issued. Reading RW while the worcLrdy bit is equal to 0 may corrupt the incoming packet. 
During a receive-DMA operation (from the time when the RML is written, until the time when 
recv_int or bufLint becomes one), this bit is equal to 0 regardless of the state of the incoming 
channel. Note that wor<Lrdy=l implies that half_rdy=l and that bytejdy=l. However, because 
of (2), word-rdy=l does not imply that, for example, two RH operations can be issued. This bit 
cannot be modified by the programmer.  ^^ 

This bit is maintained by the packet interface and is equal to 1 if: (1) there are at least two 
flits of the same packet on the incoming channel, or (2) the next available flit on the incoming 
channel is a tail. In either case, the word-rdy bit indicates that an RH operation can be issued. 
Reading RH while the half_rdy bit is equal to 0 may corrupt the incoming packet. During a 
receive-DMA operation (from the time when the RML is written, until the time when recv Jnt or 
bufLint becomes one), this bit is equal to 0 regardless of the state of the incoming channel. Note 
that halLrdy=l implies that byte_rdy=l. However, because of (2), half_rdy=l does not imply 
that two RB operations can be issued. This bit cannot be modified by the programmer.  

This bit is maintained by the packet interface, and it denotes that the outgoing channel is not 
blocked, so that an SB, SH, SW, or an ST operation can be issued. Writing SB, SH, SW, or 
ST while this bit is equal to 0 may corrupt the outgoing packet. During a send-DMA operation 
(from the time when the SML(T) is written until the time when send_int becomes one), send.rdy 
is equal to 0 regardless of the slate of the outgoing channel. This bit cannot be modified by the 
programmer.  
Reserved. 
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Bit       Name Description 

11 

10 

9-8 

nresJnt 

wake Jnt 

orun2Jnt 
orunlJnt 

This bit is set by the Myrinet-SAN interface whenever the LANai chip fails to consume an 
incoming message from the Myrinet network for the duration of the period specified by the 
TIMEOUT special register. If the NRES.ENABLE bit of the MYRINET special register is 1, 
the LANai chip is also reset. By examining the nres-int bit, one can distinguish between the 
reset-pin-induced and NRES-induced reset. This bit is cleared by the programmer, only directly 
— by writing a 1 into it.   
This bit is set when the WAKE input pin is asserted, 
only directly — by writing a 1 into it. 

This bit is cleared by the programmer, 

tailJnt 

wdog-int 

timeJnt 

These bits are set by the packet interface when an overrun condition is detected, i.e., when 
a receive operation reads past the tail flit of a packet. The two bits taken together represent 
the number of flits read past the tail flit (0 through 3). For example, if when using receive 
DMA (RMP and RML), the tail is received in the most-significant byte of a 4-byte word, both 
orun2 Jnt and orunl Jnt will be set, indicating that the values of the 3 least-significant flits are 
undefined. These bits are cleared by the programmer, either directly — by writing a 1 into them, 
or indirectly — when any receive operation is initiated.  

This bit is set by the packet interface when an RB, an RH, or an RW operation consumes a tail 
flit. This bit is cleared by the programmer, either directly — by writing a 1 into it, or indirectly 
— when another RB, RH, or RW operation is issued.  ^^^ 
This bit is set by the interrupt timer whenever it makes a transition from 0x80000000 to 
0x7FFFFFFF. This bit is cleared by the programmer, either directly — by writing a 1 into 
it, or indirectly — when IT is written. 

dmaJnt 

send-int 

buff Jnt 

This bit is set by the interrupt timer whenever it makes a transition from 0x00000000 to 
OxFFFFFFFF. This bit is cleared by the programmer, either directly — by writing a 1 into 
it, or indirectly — when IT is written.   
This bit is set by the EBUS-LBUS DMA engine when the DMA.CTR reaches 0 to signal the 
completion of a DMA transfer. This bit is cleared by the programmer, either directly — by 
writing a 1 into it, or indirectly — when the DMA.CTR is written. After an EBUS-LBUS DMA 
is initiated, one must not initiate another such DMA until the dmaJnt bit becomes 1.  

This bit is set by the packet interface to signal the completion of a send DMA, i.e., when the 
contents of the send memory buffer and the tail CRC have been appended to the outgoing packet. 
This bit is cleared by the programmer, either directly — by writing a 1 into it, or indirectly — 
when SML(T) is written. After a send DMA is initiated, one must not initiate another send 
DMA until the sendJnt bit becomes 1.  

recv Jnt 

bytejdy 

This bit is set by the packet interface when the receive-DMA buffer has been exhausted (the last 
word written is at the location pointed to by RML, and RMP=RML+4). This bit is cleared by 
the programmer, either directly — by writing a 1 into it, or indirectly — when RML is written. 
After a receive DMA is initiated, one must not initiate another receive DMA until the recvJnt 
bit, the buffJnt bit, or both, become 1.  
This bit is set by the packet interface to signal the completion of a receive DMA, i.e., when the 
entire incoming packet has been transferred into the receive memory buffer. This bit is cleared by 
the programmer, either directly — by writing a 1 into it, or indirectly — when RML is written. 
After a receive DMA is initiated, one must not initiate another receive DMA until the recv_int 
bit, the buff Jnt bit, or both, become 1.  
This bit is maintained by the packet interface and is equal to 1 if there is at least one flit on 
the incoming channel, indicating that an RB operation can be issued. Reading RB while the 
byte-rdy bit is equal to 0 may corrupt the incoming packet. During a receive-DMA operation 
(from the time when the RML is written, until the time when recv Jnt or buffJnt becomes one), 
this bit is equal to 0 regardless of the state of the incoming channel. This bit cannot be modified 
by the programmer.  
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SPECIAL-REGISTER SUMMARY 

Register Read Write Description Offset Page 
EBUS LANai EBUS    LANai 

CKS + + Internet Checksum 0x38 5 
CLOCK + Clock Configuration OxFC 7 

DEBUG + + Hardware Debugging 0x90 7 

DMA.CTR + + + + Initiate EBUS DMA 0x44 5 

DMA-DIR + +■ Direction of EBUS DMA 0x80 5 
DMA.STS + + EBUS-DMA Configuration 0x84 5 

EAR + + + + EBUS-DMA Host Address 0x3C 5 

EIMR + + + + External-Interrupt Mask 0x2C 8 

IMR + + LANai-Interrupt Mask - 8 

ISR + + + + Interrupt Status 0x28 8 

IT + + + + Interrupt Timer 0x30 6 

LAR + + + + EBUS-DMA LBUS address 0x40 5 

LED + + LED Output Pin 0x94 7 

MP + + Memory Protection 0x9C 6 

MYRINET + + Myrinet-Link Configuration 0x8C 7 

RB .   + + Receive Byte 0x60 4 

RH + + Receive Half-Word 0x64 4 

RML + + + ■ + Initiate Receive DMA 0x4C 4 
RMP + + + + Receive-DMA Buffer 0x48 4 

RTC + + + + Real-Time Clock 0x34 6 
RW + + Receive Word 0x68 4 

SA + + Send-DMA Alignment 0x6C 3 

SB + + Send Byte 0x70 3 

SH + + Send Half-Word 0x74 3 

SML + + + + Initiate Send DMA 0x54 3 

SMLT + + + + Initiate Send DMA with Tail 0x58 3 

SMP + + + + Send-DMA Buffer 0x50 3 

ST + + Send Tail 0x7C 3 

SW + + Send Word 0x78 3 

TIMEOUT + + NRES-Timeout Selection 0x88 7 

WINDOW + + Sampling-Window Selection 0x98 7 

All special registers except for the IMR are memory-mapped. The IMR is an internal register of the LANai 
on-chip processor and is not accessible from the EBUS. The memory-mapped special registers can be accessed both 
by the LANai on-chip processor and from the EBUS (except for the special register CLOCK, that can be accessed 
only from the EBUS). 

To access a memory-mapped special register from the LANai processor one should use the address of OxFFFFFFOO 
plus the offset of that special register. The base address for EBUS access of memory-mapped special registers is 
application-specific; consult system documentation for details. 

When accessing the special, memory-mapped registers, the regular memory arbitration mechanism described on 
page 2 applies. The mutual exclusion at any higher level is the responsibility of the programmer. 
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INITIALIZATION 

During the power-on reset, the chip-version-specific value listed below must be written to the CLOCK special 
register from the EBUS, to initialize the on-chip clock generation. 

After chip reset, the on-chip processor begins executing code in the system context, starting from the address 0. 
The state of the nres-int bit in the ISR upon reset indicates whether the reset has been a regular, reset-pin 

initialization (0), or an NRES-induced reset (1). 
All the remaining bits of ISR are equal to 0, except the debug-bit and the send-rdy bit, which are equal to 1. 
The MP register is initialized to the no-memory-prptection state. 
The IMR and the EIMR special registers are undefined and should be initialized by the programmer. 
All other special registers are initialized to 0 upon reset. 
After the chip is out of reset and prior to any Myrinet access, the system-specific value listed below must be 

written to the WINDOW register to configure the Myrinet-SAN interface, and a minimum of 10 milliseconds must 
be allowed for the SAN link to reconfigure. 

CHIP-VERSION-SPECIFIC INITIALIZATION 

Version CLOCK WINDOW 

LANai4.0 0x11371137 0 
LANai4.1 0x50E450E4 3 
LANai4.2 0x90449044 3 
LANai4.3 0x90449044 3 
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SIMPLE MESSAGE SENDING AND RECEIVING EXAMPLES 

In all the examples, data is represented by the following symbols: 

'm' - message byte 
- don't-care byte 

'c8' - CRC-8 byte 
'v8' - a verified CRC-8 byte (zero if CRC-8 caught no errors) 

Example #1: 

CRC-8  off 

sender 0 

{ 
SMP - 0x1000; 
SMLT - 0x1008; 

} 

receiver () 

{ 
RMP - 0x2000; 
RML = 0x3000; 

} 

sender memory 
msb        lsb 
H + + + h 

SMP -> I m I m I m I m I 
(start)  + + + + 1- 

I m I m I m I m I 
+ + +—_+ (. 

SMLT -> I m I m I m I m I 
+ + + 1- h 

SMP -> | . I . I . I . I 
(end)   + + + + ► 

bytes in Myrinet 
+ +_—+ + 1- 

I m I m I m I m I 
+ + + + 1- 

I m I m I m I m I 
+ H 1 + K 

I m I m I m I m I 

I 0 I 
+ + 

receiver memory 
msb        lsb 
+ 1 + + 1- 

RMP ->  I ■ I ■ I ■ I ■ I 
(start)  H + + 1 ► 

I m I m I m I m I 
+ + + H -+ 

I m I m I m I m I 
+—+—+—+ H 

I 0 I . I . I . I 
+ + + + y 

RMP -> I . I . I . I • I 
(end)   + ► +—+ ► 

• •      •      • 
• •      •      • 
• •      •      • 

+ + H y—-+ 

RML -> I . I . I . I • I 
+ + + + 1- 
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Example #2: 

CRC-8   on 

sender 0 
{ 

SHP = 0x1000; 
SMLT = 0x1008; 

> 

sender memory 
msb        lsb 
+—+ + + + 

SHP -> I m I m I m I m I 
(start)  + + + + + 

| m I m I m I m I 
+ + + + + 

SMLT -> I m I m I m I m I 
+ + + + + 

SMP -> I . I . I • I • I 
(end)   + + + + + 

bytes in Myrinet 
+ + + + v 
| m I m I m I m I 
+ H + + 1- 

I m I m I m I m I 
+ + ^ + ¥ 
I m I m I m I m I 

I c8l 
+ + 

receiver () 
{ 
RMP - 0x2000; 
RML - 0x3000; 

> 

receiver memory 
msb        lsb 

RMP -> I m I m I m I m I 
(start)  + + + + ► 

I m I m I m I m I 
+ + + H 1- 

| m I m I m I m I 
+ + + + + 
I v8l . I • I ■ I 
+ + + + y 

RMP -> I . I • I • I • I 
(end)   + + + + *■ 

+ + H H h 

RML -> I . I . I • I • I 
+ + + + + 
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Example #3: 

CRC-8   on 
SA     used 

sender () 

{ 
SMP = OxlOOO; 
SA  - Oxl; 
SMLT - 0x1008; 

} 

sender memory 
msb        lsb 
+ +—+ + y 

SMP -> I . I m I m I m I 
(start)  + +—+—+ + 

I m | m I m I m I 
+ + + + + 

SMLT -> | m I m I m I m | 
+ +—+—+—-+ 

SMP ->  | . I . I . I . I 
(end)   + + + + ► 

bytes in Myrinet 
4 + + + 

I m I m I m I 
+ +—+ H + 

I m I m I m I m I 
+ +. + + 1. 

I m I m I m I m I 
+ + + + ► 

I c8| 
+ + 

receiver () 
i 

RMP - 0x2000; 
RML = 0x3000; 

} 

receiver memory 
(assuming the first 
three bytes have been 
stripped by switches) 
msb        lsb 
H + + + H 

RMP -> I m I m I m I m I 
(start)  + +-—+ *■ 1- 

I m I m I m I m I 
+ + + + ► 
I v8| . I . I . I 
+ + + + 1- 

RMP -> I . I . I . I . I 
(end)   + +—+ + ► 

• •      •      • 
■     •     •     • 

• •     ■     • 

+ + + + h 

RML -> | . I . I . I . I 
+ + + + 1- 
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ELECTRICAL CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS 

Symbol 

Vi„,Vc out 

lout 
PD 

J-bias 

Tstg 

Rating 
Power Supply Voltage 

Terminal Voltage (except Vdd) 
Output Current 

Power Dissipation 
Temperature Under Bias 

Storage Temperature 
Operating Temperature 

Value 

-0.5 to +4.6 
-0.5 to Vdd+0.5 

100 
3 

-55 to 125 
-55 to 125 

0to70 

Unit 
V 
V 

mA 
W 
°C 
°C 
°C 

RECOMMENDED OPERATING CONDITIONS 

Symbol Parameter Min Typ Max Unit 

VlH 

Power Supply Voltage 
Input High Voltage 
Input Low Voltage 

3.0 
2.2 
-0.3 

3.3 3.6 
Vdd+0.3 

0.8 

V 
V 
V 

DC CHARACTERISTICS 

Symbol Parameter Min Max Unit 

hi Input Leakage Current - ±1.0 /xA 

ILO Output Leakage Current - ±1.0 fiA 

VOL(IOL = 5mA) Output Low Voltage - 0.4 V 
V0H(IOH = -5mA) Output High Voltage 2.4 - V 

CAPACITANCE (TA = +250C, / = l.OMffz, dV = 3V) 

Symbol Parameter Max Unit 

Ci 
Ciio 

Input Capacitance 
I/O Capacitance 

5 
8 

pF 
pF 

AC TEST LOADS 

-J ^- z0 = 5on ■= RL = son 

VL = Vdd/2 
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OUTPUT DRIVERS 

The output drivers and the tri-state drivers are of three different strengths, 
following are the typical delay values at VM = 3.3V, T„ = 25°C : 

For purely capacitive loads, the 

Output 

A02 - A19, A18, A19, A20, OE 
EA02 - EA31, EDOO - ED31 

otherwise 

Delay 

outL = 02ns + C)nad\pF\ *0.024ns/pF 
outB = 0.2ns + Cinadlp-F] » 0.030ns/pF 

0.2ns + C\naA\pF\ »0.042ns/pF out ■■ 

For power-supply voltage of 3.3V ± 10%, ambient temperature from 0° to 70°C, and the acceptable manufacturing-process 
variation, output-driver delays have ±50% variation. 

The full hspice model is available upon request. 

Note: The LANai4.1 version of the chip has weaker output drivers. Data available upon request. 
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PINOUT 

? » 
CM 

■C 

9 
9 
O 
Z 

00 
9 

(0 
9 

in 
9 

T3 
9 
4 
9 

IN 
9 o 

Q_ 

O -1 z u 
O X 

9 ^ CM <n •o ■D V in to r^ o z m CD 
O 
a 
o 

o 
z 
o 
> o to o in o 

a 
z 

V) 

CD 
> rr 
o o O 

Q 
Z o ̂  o 9 o 

Q 
z o 

_J 

o 
z 
o Ol o 

00 O VI 
1— CE 

Z 

o 
o z u 

0N3 
eiv 
»IV 
51» 
91» 
PPA 

_ilL nv 
JIL 

81» 
OND 

JIL 
61» 

_3fi. 
»a» 
PPA 

-ÜUL 
_stu_ _aiL 

»80 
180 
0N0 
z»g 
£80 
»80 
580 
980 
PPA 
«0 
B80 
680 
810 
QNO 
IIP 
ZIP 
eio 
»10 

~sT5" 
PPA 
910 
tio 
810 
610 
820 
QNO 
IZO 
ZZO 
EZO 
»ZQ 
PPA 
5Z0 
9Z0 
LZQ 
8ZQ 
QNO 
6Z0 
8E0 
IE0 

3dS 
PPA 

Mvricoi 

LANai 4 

o 

_G6  
_G5  
_G4  
_G3  

GND 
_G2  
_G1  
_G8  

INT 
Vdd 
LED 
DSIZ2 
DS1Z1 
DSIZ8 
GND 
DMORE 

DINC 
A1NC 
DSUH 
»do 
DDIR 
DHAA 
DUE? 
DADR 
AHLD 
GND 
EADRV 
EA31 
EA38 
EA29 
»dd 
EA28 
EA27 
EA26 
EA25 
EA24 
GND 
EA23 
EA22 
EA21 
EA2B 
EA19 
Vdd 
EA18 
EA17 
EA16 
EA15 
GND 
EA14 
EA13 
EA12 
EA11 
Vdd 
EA18 
EA89 
EA88 
EA87 
GND 

o z o 
m o m 
m 

so 

m o 
9 
9 

m 
9 8 

m 
9 
M 

m 
g 

m o 
9 

m 
9 
Hi 

z pi g 
O) 

m o 
9 
-J 

m o 
9 
CO 

m o 
9 
to 
a 
a 

p» a 
9 

m 
o 

PI 
o 
ro 

m 
o s o z 

o 
PI o 
UI 

o 
5 
m o 
-** 
m o m o 
5 s 

m 
o 
to 
9 

m 
o o 

ro 
M 

N3 
z m o 
M 

m 
s 
UI 

m 
to 

PI o PI a 
to 
00 

s m o to 
to 

m 
o 
u 
9 

PI 
z 
r- 
a m 

z 
o 
n a a 

ro m 
u a m ro 

m »— m 9 
m 
9 
ro 

o z 
o 
m 
9 9 

PI 

S 
UI 
9 
a a 

240-pin QFP (top view) 
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CLOCKING 

Pin 

CLK 

I/O Description 

Clock: The main clock input. 

CLK J    V 

TclK 

\ I 

THCLK THCLK 

\__I—\__/   \ r~^ 

Symbol Parameter Min Max 

TcLK Clock period 25ns 20/xs 

THCLK Clock half-period 12ns 10/xs 

SYNCHRONOUS INPUTS 

CLK JV ' 1 

A A_ZA_ .—i 
r»s"   «H 

CDCZjl 

r-^j-^—T-\ r-^ 
HZXZDCDCDCDCDCZX 

AINC, CS, DINC, DMAA, DNEW, DSUM, EA, ED, WE, SPE 

]ooat^3)anoaoaoaoaocx]a 
~*tS "UP '»s'V1     »HT.n F.m,D AHLD.EHLD 

i ^ 1 

i A        i 
■ ■ • it- 
's  *WH' 

3000=1)00011 
WAKE 

Symbol 

ts 
tH 

t\VH 

Parameter 
Synchronous-input setup time 
Synchronous-input hold time 
WAKE hold time 

Min 
Ins 
3ns 
5ns 

Max 
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SYNCHRONOUS OUTPUTS 

CLK  / V j 
1 \ 

X 

x^c 

DDIR, DMORE, G, INT, LED 

X 

*oit lOL 

X 
DSIZ 

DPEND 

Tt f * 

xzxzza=x=xzx=i 

Symbol 

tow 
toz. 

Parameter 
Synchronous-output delay 
Synchronous-output delay 

Min 
0.5ns 
0.5ns 

Max 
8ns 
8ns 
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RESET SEQUENCE 

Pin        I/O 

RST 

Description 

Reset: The main reset input. 
During the power-on reset, the special register CLOCK, which controls the on- 
chip clock-generation, must be initialized.  Note that, unlike with other special 
registers, RST must be asserted while the CLOCK is written. 
This register need not be initialized during a non-power-on reset.  

Non-Power-On Reset Sequence 

CLK 

RST 

A ,'~^ 
:lock cyeUa 

A_ 

Power-On Reset Sequence 

CLK 

RST 

CS 

SPE 

WEÖ 

ED 

EA 

Note: For LANai4.1 chips, the CLOCK register must be initialized with the value 0x50E450E4 
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LBUS INTERFACE 

Pin 

DOO - D31 

A02 - A19 

A17 - A19 

WR0-WR3 

OE 

I/O 

I/O 

Description 

LBUS Data: 32-bit bi-directional data bus (bit 31 is the most significant). 

LBUS Address: The LBUS address pins. The internals of the LANai 4 chip sup- 
port 32-bit addresses, but pin count limits the LBUS address space to 1 megabyte. 

LBUS Address Complement: These three signals are provided for address 
decoding when using multiple banks of SRAM chips. 

LBUS Write Enable: 8 write enable signals, one for each byte in the 64-bit 
word. The LANai is a big-endian machine, and WEO corresponds to the smallest 
byte address, i.e., to the most-significant byte.      

LBUS Output Enable: This signal controls the direction of the LBUS data 

bus.   

A   

ÖE   

WR 

"> X 

tLBUS 

X 

X 

Ao 

Do 

'HDH 

]G 
ÜL 

A, xzz: 
*WEH 

^ 

«ZWO >HDH 'WDH 

K     * 

« JEZ 

X 

X 

Symbol 

tLBUS 
tA 

toE 
tWEL 
twEH 
tRDS 
tRDH 
tWD 

tzWD 
twDH 
toEZ 

Parameter 

LBUS memory cycle 
Address delay 
Output-enable delay 
Write-enable assertion delay 
Write-enable deassertion delay 
Read-data setup time 
Read-data hold time 
Write-data delay (LANai limited) 
Write-data delay (SRAM limited) 
Write-data hold time 
Data-drivers turn-off time 

Min 

THCLK — 0.5ns 
out i. 
OVXL 

out + 2ns 
out 
3ns 
Ins 

out 
0ns 

Max 

outh + 0.5ns 
outt + 0.5ns 

out + 3ns 
out + 0.5ns 

out + 4ns 
out 

0.5ns 
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EBUSINTERFACE 

The LANai 4 EBUS is a 32-bit wide, synchronous interface. 
Core EBUS functionality provides for reading and writing the LANai LBUS memory, and the LANai special registers. 

The rest of the EBUS interface contains the circuitry that can assist the external hardware in implementing the EBUS DMA: 
LBUS address register, EBUS address register, access counter, and mechanisms for controlling these registers in sync with the 
data transfer. 
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EBUS SINGLE-ACCESS MODE 

Pin I/O                                                               Description 

CS 
synch. 

I 

EBUS Chip Select: When this pin is asserted on a rising CLK edge, the first 
of the two memory cycles during the immediately following clock cycle will be 
used for EBUS access (page 2). 

DMAA 
synch. 

I 

DMA Address: If this pin is not asserted, the current EBUS access is a single 
LBUS memory access or a single special-register access, with the LBUS address 
specified on the EA pins. 
If this pin is asserted, the current EBUS access is part of a DMA, and special 
register LAR is used to provide the LBUS address. 

SPE 
synch. 

I 

EBUS Special Register Access: In single-access EBUS mode, if this pin is 
asserted a special register is accessed, and if it is not asserted the LBUS memory 
is accessed. 

EÖE I 
Output Enable For ED Pins: When this signal is asserted, the ED bus is the 
output. 

EDOO 

ED31 

synch. 
I/O 

EBUS Data: Bi-directional EBUS data pins (bit 31 is the most significant). 

EPAR o EBUS Parity: This output is computed as the parity of the 32 ED pins. 

EHLD 
synch. 

I 

ED Hold: During EBUS read access, the EHLD input determines the timing of 
the ED bus. 
In the typical operating regime, EHLD is never asserted and the data changes 
when CLK is low, to be sampled by the external hardware on the rising CLK 
edge. 
If the external hardware cannot latch the data as described above, it can hold 
the read data on the ED bus as long as necessary by keeping the EHLD input 
asserted: The EHLD is sampled on each CLK edge to determine if ED bus is 
allowed to change during the upcoming half of clock cycle. 

EA02 

EA31 

synch. 
I/O 

EBUS Address: Bi-directional EBUS address pins (bit 31 is the most signifi- 
cant).                                                                         
In single-access mode (DMAA not asserted), if SPE is not asserted, pins EA02- 
EA19 specify the address of the LBUS memory, or, if SPE is asserted, pins EA02- 
EA08 select a LANai special register. 
In DMA mode (DMAA asserted), these pins are used to output the address 
specified by the special register EAR (EBUS address register). 

WEÖ 

WE3 

synch. 
I 

EBUS Write Enable: Write enable signals, one for each byte in the 32-bit 
word. The LANai is a big-endian machine, and WEO corresponds to the smallest 
bvte address, i.e., to the most-significant byte. 
When accessing LANai special registers, WEO determines if the access is a read 
or a write. 
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Single-Access EBUS Timing 

DMAA 

SPE 

WE 

EA 

ED 

EPAR 

EOE 

EHLD 

DADR 

CLK 

  \ 
CS 

s0 

■—• 
«s 

Wo 

1 
nzr 

A0 

*H 

X 

v \r 
ji A. 

3C 
Wl 

\ 

tBD 

D0 

Po 

X 
X 

\ 1—V 
xzn 

Dl 

X 

/—\ 

£Z1 

n 

=B 

w3 

*koez 

X 

*7 

«H 

XIJC 
£Z1 
XZDC 

EtZX 

ss 

*3 

XZDC 
/ZZ7" 

-«3 xzx 
D3 X 

X 

\_ 

ÜDC 

w« 

1 

X 
X 

DA 

DC 
iZ 

Symbol 

tED 

tEOED 

tEOEZ 

Parameter 
Read-data access time (LANai limited) 
Read-data access time (EOE limited) 
Data-bus release time 

Min 

outs 
OUtE 
Ons 

Max 

outs + 3ns 
ovtE + 2ns 

2ns 
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EHLD Timing 
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EBUS DMA MODE 

Pin I/O Description 

AINC 
synch. 

I 
Advance DMA Register EAR: When this input is asserted, special register 
EAR is incremented by 4. 

DINC 
synch. 

I 

Advance DMA Registers LAR and DMA-CTR: When this input is as- 
serted, special register LAR is incremented by 4, and special register DMA-CTR 
is decremented by 4., 

DNEW 
synch. 

I 

DSUM 
synch. 

I 

DPEND 
synch. 

O 

DSIZO 

DSIZ2 

synch. 
O 

DMORE 

EADRV 

AHLD 

DADR 

synch. 
O 

synch. 
I 

Pre-Increment LAR: During EBUS DMA, the DINC input is used to incre- 
ment the LBUS address register (LAR). The DNEW input selects if the LBUS 
address for the current DMA memory access should be the value of LAR be- 
fore incrementing (if DNEW is not asserted) or after incrementing (if DNEW is 
asserted). 

DMA Checksum: When this input is asserted, the data of the current EBUS 
access is included in the current Internet-checksum computation (special register 
CKS). 

DMA Pending: This signal is asserted when the special register DMA.CTR 
has a non-zero value. 

DMA Size: Some standard I/O buses (such as SBus) have burst-transfer modes 
that require that each data block be of size 2N bytes, starting on 2w-aligned 
address. 
The special register DMAJSTS (page 5) specifies the allowed transfer modes for 
the I/O bus that the LANai connects to. 
The DSIZ signals encode (using the SBus convention) the size of the largest 
aligned block that can be transferred next, given the current values of EAR, 
DMA-CTR, and DMA.STS. 

DSIZ2 DSIZ1 [ DSIZO Pending Transfer 

0 0 0 1 word 
0 0 1 N/A 
0 1 0 N/A 
0 1 1 no transfers 
1 0 0 4 words 
1 0 1 8 words 
1 1 0 16 words 
1 1 1 2 words 

DMA Pending: This signal is asserted to indicate that there is at least one 
more burst-transfer following the one currently specified by the DSIZ pins. 

Output Enable For EA Pins: When this signal is asserted, the EA bus is the 
output. 

EA Hold: During EBUS DMA, the AHLD input determines the timing of the 
EA bus. 
In the typical operating regime, AHLD is never asserted and the data is driven 
when CLK is low, sampled by the external hardware on the rising CLK edge. 
If the external hardware cannot latch the data as described above, it can hold 
the read data on the EA bus as long as necessary by keeping the AHLD input 
asserted: The AHLD is sampled on each CLK edge to determine if EA bus is 
allowed to change during the upcoming half of clock cycle. 

Drive EBUS Address Onto the ED bus: In some systems it may be more 
convenient to obtain the value of the EAR on the ED, rather than on the EA 
bus. When DADR is asserted, the data presented on the ED bus is the current 
value of EAR, rather than the data of the current EBUS access. 
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DMAA, DINC, DNEW Timing 

CLK 

CS i. 

SPE A_ 

WEO 

EA 

ED 

V 

\ 

/     \ 

IG A(l .AH) 

1C 
DMAA     ,i 

DINC 

DNEW    l 

A 

D 

1 
JCTJC 

\ 

l    \ 
\Z7 
JZ \ 

D0 7—r 

7 
7 

ZXÜ3C 
 \ °"00 f 

TUT 
TZ7 

UTA. 
VZT 
r_v 

XTJC 

n 
)G3C 

X3DC 
LAR>OxlM LARsOxIM 

/\ 

T T 

o 

TIT 
"xro. 
/ZT 

A- "»"" f 
LANal 
MCI 

EEX 

»2 3CDC 

V 
/—\ 

7ZÜ. 

D3 

7TA 
■\=1 

A" °»"" )T 

)CEX 

3CTJC 

"UT7 
ZZ7 

\ 

/    \ 

TTT 
i__i 

*>4 3CTJC 

£ZJ 
5GEDC 

LAN»! 
»CC«M 

)CEJC 

TZ7 
TZ7 
TZ7 

A_ 

T 

)CüEX 

X3DC 

»S I 

T 
T 

x o"oc A 

X2DC 
LARsOxlOa LARzsOxlOC LARcOxllO 
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DPEND, DSIZ0-DSIZ2, DMORE, AINC Timing 

DMORE 
*OH 

DMA.CTR-OxO 

BAR-OxFC EAR-OxlOO EAR-OxlIM 

DMAXTR<OiC DMA-CTR-O«» DMAJCTR—0x4 DMAjCTR-OxO 

Note: The example value of DMAJ3TS enables only 2-word bursts 
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EADRV Timing 

CLK 

CS 

SPE 

CS i. 

A_J \ \ \_ 

Y 
WEO 

EA 

ED 

AINC 

EADRV 

AHLD 

V 

IG 

A(l IAR) 

*Bl< 

*EARO 

:-r 

/ 

'STADRVD 

Symbol Parameter Min Max 

tEARD EAR access time outE + 10ns 
tsADRVD EADRV access time OMXE + 2ns 
tEADRVZ Address bus release time (ms 2ns 
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DADR Timing 

CLK 

CS 

SPE 

WEÖ 

EA 

ED 

AINC 

DADR 

EÖE 

i. 
\ >_ 

\ 

IG A(i ;AR) I 
)C X 

*EAR 

*DADRD 

r^ 
«DAD/tH 

/ 

BAR«0xl234 BAR-OX1238 

Symbol Parameter Min Max 

töADRD DADR access time oute + 2ns 
tDADRH DADR hold time (ms 
tAINCD AINC access time outE + 5ns 
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Pin I/O 

WIN 

LED 

G0-G9 

DDIR 

synch. 
O 

synch. 
O 

synch. 
O 

Description 

Chip Window: This signal should be connected to a test point that can be 
used for timing observation of several internal chip signals. The special register 
DEBUG selects which internal signal is to be output on the WIN pin.  

LED Output: This general-purpose output is controlled by the least-significant 
bit of the special register LED. 

INT 
synch. 

O 

General-Purpose Output: These general-purpose outputs are controlled by 
the bits 1 through 10 of the special register LED. 

EBUS DMA Direction: This general-purpose output is the complement of the 
least-significant bit of the special register DMA-DIR (page 5). It * typfcally used 
to specify the direction of the upcoming EBUS DMA (asserted DDIR specifies 
the LBUS-»EBUS direction). 

WAKE synch. 
I 

Interrupt Request: This output is asserted if a bit in the special register ISR 
(Interrupt Status Register) and the corresponding bit in the special register EIMR 
(External Interrupt Mask Register) are both equal to 1.  

Wakeup: When this input is asserted, the wakeJnt bit in the special register 
ISR (Interrupt Status Register) is set. 
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MYRINET SAN INTERFACE 

Pin           I/O Description 

Configuration TCLK I 

SAN Transmit Clock: This clock input sets the data rate of the SAN output 
link. A byte is sent on every transition, so, for the nominal Myrinet SAN link 
rate of 160 megabytes per second, this is an 80 MHz clock. The allowed range for 
duty cycle is 45-55%. There is no restriction on the phase of TCLK with respect 
to any other clock (including TCLK on the other end of the SAN link). 
The frequency of TCLK must be within lOOOppm (0.1%) of 80MHz for compati- 
bility with other Myrinet products. 

LVDD power 

SAN Low-Voltage-Driver-Supply Voltage: This pin should be connected to 
a 1.25V +/- 2% supply if it is to be compatible with other Myrinet SAN links. 
Power consumption varies with channel usage, 20mA minimum, 90mA maximum. 
If the SAN output drivers are shorted to GND, current draw can exceed 240mA. 

VTH I 
SAN Input-Threshold Reference: This reference input should be LVDD/2 
± 1%. Current draw is l/u4 max. 

BIAS I 
SAN Bias Reference: For 3.3V operation, this pin should be fed 1.0mA. At 
that current level, the voltage on the pin will be approximately 1.4V. A 1.87Kfi 
resistor to 3.3V supply will achieve this. 

OAH SAN 
0 

SAN Impedence Reference, High: This pin should be connected to GND 
through a 50 ohm resistor. 

OAL SAN 
O 

SAN Impedence Reference, Low: This pin should be connected to LVDD 
through a 50-ohm resistor. 

Input Channel 10-17 
ID 

SAN 
I 

SAN Input: The 8 data bits (10-17,17 most significant) and the control bit (ID) 
are transition encoded.  A transition on a data bit corresponds to the value of 
1, no transition to the value of 0.  A transition on the control bit corresponds 
to the data byte, no transition to the control symbol (see Myrinet SAN Link 
Specification). 
Each of these pins have a built-in 20KO pulldown resistor. 

OB SAN 
O 

SAN Output Block: This output is asserted to notify the connecting output 
SAN link channel that it must stop transmitting (see Myrinet SAN Link Specifi- 
cation). 

Output Channel O0-O7 
OD 

SAN 
0 

SAN Output: The 8 data bits (O0-O7, 07 most significant) and the control bit 
(OD) are transition encoded. A transition on a data bit corresponds to the value 
of 1, no transition to the value of 0. A transition on the control bit corresponds 
to the data byte, no transition to the control symbol (see Myrinet SAN Link 
Specification). 

IB SAN 
I 

SAN Input Block:   When this input is asserted, the output channel stops 
transmitting (see Myrinet SAN Link Specification). 
This pin has a built-in 20Kft pulldown resistor. 
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The LANai 5 is a programmable communication device that provides an interface to the Myrinet system-area network 
(SAN). 

As illustrated below, a LANai 5 chip consists of the LANai core, with an instruction-interpreting processor and 
a packet interface, the Myrinet-SAN interface, and the EBUS interface. 

The Local Bus (LBUS) is an interface to asynchronous static SRAMs. The External Bus (EBUS) is a synchronous, 
pipelined interface. 

Myrinet SAN 

Link Interface 
LANai5 

LANai core 

64-bit Packet Interface 

 ^T  

c ^> 

32-bit Processor 

 -__  

^> 

64-bit EBUS Interface 

 :?**>:  

V- 

S,^ 
} 

64-bit 
EBUS 

} 

64-bit LBUS 
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MEMORY INTERFACE 

In the remainder of this specification, we shall refer to 8-bit data units as bytes, to 16-bit units as half-words, to 
32-bit units as words, and to 64-bit units as double-words. Although the internals of the LANai 5 chip support 32-bit 
addresses, pin-count limitations restrict the LBUS to a maximum of 16M bytes. 

Depending on the value of the DBL bit (page 23), the LANai 5 LBUS operates at either one or two times the 
chip-clock speed (one or two LBUS memory cycles for every clock cycle). The external-access bus (EBUS), the 
packet-interface receive DMA, and the packet-interface send DMA each request a maximum of one memory access 
per clock cycle. The on-chip processor requests up to two memory accesses per clock cycle (instruction and data). 
The available memory cycle(s) within each clock cycle are assigned based on the following priority (highest to lowest): 
EBUS, receive DMA, send DMA, and the processor. Since every EBUS memory request is granted, the LANai 5 
chip along with the memory on its LBUS appears as a block of synchronous memory when observed from the EBUS. 

Both the LBUS and the EBUS addresses are byte addresses, and the byte order is big-endian (the most-significant 
byte is stored at the lowest byte address). 

The 2-, 4-, and 8-byte memory accesses on the LBUS must be aligned; any least-significant bits of an address 
that would make a memory access non-aligned are ignored. 

The LANai chip provides a rudimentary memory-protection mechanism that allows a memory segment of pro- 
grammable size to be write-protected from the LANai core, i.e., writable only from the EBUS (page 6). 

Although the LANai core cannot access the EBUS directly, the on-chip processor can initiate a data transfer 
between the LBUS and the EBUS (page 5). The LANai EBUS interface is simple and generic, and extra hardware 
is necessary to connect it to any standard bus. 
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PACKET SENDING 

Please consult pages 13 through 19 for a set of send and receive examples. 
A data-communication, flow-control unit is called a flit, and consists of eight data bits plus a tail bit. Packets are 

of arbitrary length (in flits), and the tail bit marks the last flit of every packet. The byte order in the communication 
network is big-endian, i.e., the most-significant byte appears first in the network. 

After the LANai 5 chip is out of reset, and prior to any Myrinet-network access, the TIMEOUT, MYRINET, 
and WINDOW special registers (page 7) must be initialized. 

Packets are injected into the Myrinet network by initiating the send DMA. The following 32-bit, special registers 
control the send DMA: 

Register                                                   Description 

SMP 

Send-Message Pointer: Address of the first double-word of the send- 
DMA memory buffer. This register is incremented by 8 by the packet 
interface as each double-word is appended to the outgoing packet, and, 
upon completion, equals SML+8. 

SA 

Send-Message Align: The three least-significant bits of this register spec- 
ify how many leading flits (0-7) of the contents of the next-specified send- 
DMA memory buffer should NOT be appended to the outgoing packet. 
This register may be used to keep the payload portion of the message 8- 
byte aligned, even when the length of the routing header is not a multiple 
of 8. Only the first send DMA following a write into this register is affected. 

SMH 

Send-Message Header: Address of the last double-word of the routing 
header. When the CRC-32 is enabled (page 7), writing SMH instructs the 
packet interface NOT to include the routing header in the CRC-32 for that 
packet (the routing header will be stripped by the Myrinet switches). Only 
the first send DMA following a write into this register is affected. 

SMC 

Send-Message Header CRC: Address of the double-word in the send- 
DMA memory buffer which is NOT appended to the outgoing packet; the 
optional, partial CRC-32, followed by four zero bytes, is sent instead. Only 
the first send DMA following a write into this register is affected. 

SML 

Send-Message Limit: Writing this register initiates a send DMA that 
appends to the outgoing packet, one double-word at a time, the contents of 
the memory buffer starting with the double-word at address SMP (except 
for the leading bytes, if specified by SA) and ending with the double-word 
at address SML. 
If SMH was written, the CRC-32 computation starts with the double-word 
at address SMH+8. 
If SMC was written, the partial CRC-32, followed by four zero flits, is sent 
instead of the double-word pointed to by SMC. 

SMLT 

Send-Message Limit, with the Tail: The same as SML, but, instead of 
appending the double-word at address SML, the following byte(s) complete 
the outgoing packet: 1) if the CRC-32 is enabled, the word equal to the 
CRC-32 of the outgoing packet (not including any partial CRC-32s), and 
2a) if the CRC-8 is enabled (page 7), the tail flit equal to the CRC-8 of the 
outgoing packet (including all CRC-32 words and sets of four padding zero 
bytes accompanying partial CRC-32s), or 2b) if the CRC-8 is not enabled, 
a zero tail flit. 

Upon completion of a send DMA, the sendJnt bit of the special register ISR is set (page 10). 
Since the send DMA accesses 64 bits at a time, the send memory buffer must be aligned on a double-word 

boundary. Hence, the three least-significant bits of SMP, SMH, SMC, and SML(T) are hard-wired to zero. 
SA is a write-only register, and reading it produces an undefined value. Reading any other send register is a valid 

operation, but one should note that SML and SMLT are stored in the same physical register. If any of the send 
registers are written during a send DMA, the resulting behavior is undefined. 
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PACKET RECEIVING 

Please consult pages 13 through 19 for a set of send and receive examples. 
A data-communication, flow-control unit is called a flit, and consists of eight data bits plus a tail bit. Packets are 

of arbitrary length (in flits), and the tail bit marks the last flit of every packet. The byte order in the communication 
network is big-endian, i.e., the most significant byte of a word (or of a half-word) appears first in the network. 

After the LANai 5 chip is out of reset, and prior to any Myrinet-network access, the TIMEOUT, MYRINET, 
and WINDOW special registers (page 7) must be initialized. 

An incoming packet is accepted from the network by initiating the receive DMA. The following 32-bit, special 
registers control the receive DMA: 

Register Description 

RMP 

Receive-Message Pointer: Address of the first double-word of the 
receive-DMA memory buffer. This register is incremented by 8 by the 
packet interface as each double-word is written into the buffer. After an 
entire packet has been received, RMP points to the first aligned double- 
word past the end of the packet. 

RMC 

Receive-Message Header CRC: Points to the slot in the memory for 
the optional, partial CRC-32. When the CRC-32 is enabled (page 7) and 
RMC is written, if the message arrives with the correct partial CRC-32, zero 
is written into the double-word pointed to by RMC. Only the first receive 
DMA following a write into this register is affected. When the receive DMA 
has written the incoming message into the memory up to and including the 
double-word pointed to by RMC, the headJnt bit of ISR is set (page 10). 

RMW 

Receive-Message Header Wakeup: This is the same physical register as 
RMC. However, when writing to RMW there is no side effect of requesting 
that the partial CRC-32 be verified. The intended use of RMW is to be able 
to set up an early warning of an incoming message, while the receive DMA 
is possibly still going on, even when the message header does not carry the 
partial CRC-32. When the receive DMA has written the incoming message 
into the memory up to and including the double-word pointed to by RMW, 
the headJnt bit of ISR is set (page 10). 

RML 

Receive-Message Limit: Writing into RML enables a receive DMA and 
instructs the packet interface to put the (remainder of the) incoming packet, 
one double-word at a time, into the memory buffer that starts at RMP and 
ends at RML. When the CRC-8 is enabled (page 7), if the message arrives 
with the correct CRC-8, zero is written into the last byte of the message. 
When the CRC-32 is enabled, if the message arrives with the correct CRC- 
32, zero is written into the four bytes preceding the tail byte. 

When an entire incoming packet has been transferred into the receive memory buffer, the recvJnt bit of the special 
register ISR is set (page 10). If the receive memory buffer has been exhausted (the last double-word written is at 
the location pointed to by RML, and RMP=RML-l-8), bufLint bit of ISR is set. After a receive DMA is initiated, 
one must not initiate another receive DMA until the recv Jnt bit, the bufLint bit, or both, have been set. 

Since the receive DMA accesses 64 bits at a time, the receive memory buffer must be aligned on a double-word 
boundary. Hence, the three least-significant bits of RML, RMP, and RMC (RMW) are hard-wired to zero. 

If the length in bytes (flits) of the incoming packet (including any CRC-32 and/or CRC-8) is not a multiple of 8, 
the overrun bits of ISR will be set (page 10). The packet following the currently accessed packet is guaranteed not 
to be corrupted. The bytes corresponding to the flits past the tail flit are undefined. 

Reading any receive register is a valid operation. If any of these registers is written during a receive DMA, the 
resulting behavior is undefined. 
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EBUS-LBUS DATA TRANSFER 

The LANai 5 programmer has control over two independent DMA engines, one for EBUS->LBUS direction, the other 
for LBUS-»EBUS direction. The data transfers are initiated by accessing the following 32-bit, special registers: 

Register 

E2LJLAR 

E2L.EAR 

E2L.CTR 

L2E-LAR 

L2E.EAR 

L2E.CTR 

LAR 

CTR 

Description 

LBUS Address Register, EBUS-»LBUS Direction: Points to the 
beginning of the DMA buffer on the LBUS. This register is incremented by 
8 as each double-word is transferred, and, upon completion, points to the 
first double-word past the LBUS DMA buffer. 

EBUS Address Register, EBUS-fLBUS Direction: Points to the 
beginning of the DMA buffer on the EBUS. This register is incremented by 
8 as each double-word is transferred, and, upon completion, points to the 
first double-word past the EBUS DMA buffer. 

DMA Counter, EBUS-»LBUS Direction: Writing a non-zero value 
into the E2L.CTR register initiates the EBUS-»LBUS DMA. This register 
is decremented by 8 as each double-word is transferred, and equals 0 upon 
completion. 

LBUS Address Register, LBUS-^EBUS Direction: Points to the 
beginning of the DMA buffer on the LBUS. This register is incremented by 
8 as each double-word is transferred, and, upon completion, points to the 
first double-word past the LBUS DMA buffer. 

EBUS Address Register, LBUS-+EBUS Direction: Points to the 
beginning of the DMA buffer on the EBUS. This register is incremented by 
8 as each double-word is transferred, and, upon completion, points to the 
first double-word past the EBUS DMA buffer. 

DMA Counter, LBUS-»EBUS Direction: Writing a non-zero value 
into the E2L.CTR register initiates the LBUS->EBUS DMA. This register 
is decremented by 8 as each double-word is transferred, and equals 0 upon 
completion. 

LBUS Address Register: Reserved for use by the EBUS hardware (page 
28). 

EBUS-LBUS DMA Counter: Reserved for use by the EBUS hardware 
(page 28). 

EBUS-LBUS DMA Burst Sizes: The eight least-significant bits of 
this register specify the allowed burst modes of the EBUS interface. The 
BURST register affects only the LANai 5 status pins (page 37). 

BURST 

Bit Name PCI SBUS 
0 PCI 1 0 
1 B16 16-byte cache-line size 16-byte bursts supported 
2 B32 32-byte cache-line size 32-byte bursts supported 
3 B64 64-byte cache-line size 64-byte bursts supported 
4 B128 128-byte cache-line size 128-byte bursts supported 
5 B256 256-byte cache-line size N/A 
6 B512 512-byte cache-line size N/A 
7 B1024 1024-byte cache-line size N/A 

For PCI-like interfaces, which support only a single burst size, typically 
equal to the cache-line size, only one of the bits 1 through 7 should be 
set. For SBUS-like interfaces, which support several burst sizes, all the 
supported burst sizes should have their corresponding bits set. 
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Upon completion of an EBUS->LBUS DMA the e21 int bit of the special register ISR is set (page 10). Upon 
completion of an LBUS-+EBUS DMA, the 12eint bit of ISR is set. 

Since the EBUS DMAs transfer 64 bits at a time, the LBUS memory buffer must be aligned on a double-word 
boundary. Hence, the three least-significant bits of E2L-LAR, E2L.CTR, L2EXAR, and L2E.CTR are hard-wired 
to zero. 

The BURST is a write-only register, and reading it produces undefined values. Reading any other register is a 
valid operation. Writing any of the E2L registers or the BURST register during an EBUS-+LBUS DMA, or writing 
any of the L2E registers or the BURST register during an LBUS-^EBUS DMA may result in violation of the protocol 
on the I/O bus that the EBUS connects to. 

COUNTERS/TIMERS 

There are two real-time counters on the LANai 5 chip, both of which use the time reference that is equal to 40 times 
the period of the transmit clock of the Myrinet-SAN interface (page 39). Nominally, this is an 80 MHz clock, so the 
time reference is equal to 1/2 microsecond. 

Register Description 

RTC Real-Time Clock: This is a 32-bit counter that is incremented every 
time-reference period. 

IT 

Interrupt Timer: This is a 32-bit counter that is decremented every 
time-reference period. 
Whenever this counter makes a transition from 0x00000000 to 
OxFFFFFFFF, the timeJnt bit of the special register ISR is set (page 
10). Whenever it makes a transition from 0x80000000 to 0x7FFFFFFF, 
the wdog-int bit of ISR is set. 

MEMORY PROTECTION 

The LANai 5 chip provides a rudimentary memory-protection mechanism that allows a memory segment of pro- 
grammable size to be write-protected from the LANai core, i.e., writable only from the EBUS. 

Register Description 

MP 

Memory Protection: If the WE (Write Enable) bit is 1, the LANai is 
allowed to write to any memory location (no memory protection). Upon 
reset, this is the default value of the WE bit. 
If the WE bit is 0, the A12-A23 bits (the A bits) define the region(s) of 
memory in which the LANai core is allowed to write: a write to a memory 
location is allowed if a bit in the address of that memory location is 1 and 
the corresponding A bit is 1. 

Bit 31 30 29 28 27 26 25 24 
Name WE 

Bit 23 22 21 20 19 18 17 16 
Name A23 A22 A21 A20 A19 A18 A17 A16 

Bit 15 14 13 12 11 10 9 8 
Name A15 A14 A13 A12 - - - - 

Bit 7 6 5 4 3 2 1 0 
Name 

A typical use of this mechanism is to write-protect a memory segment at the bottom of the memory (where the 
code for the LANai processor is usually kept), and allow writes to addresses up to the highest available memory on 
the LBUS. 

For example, writing the value OxOOOFEOOO to the MP special register write-protects the lowest 8KB and allows 
writes to addresses up to 1MB-1. 

Pin-count limitations restrict the LBUS of the LANai 5 chip to a maximum of 16M bytes. 
The MP special register is a write-only register, and reading it produces an undefined value. 
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CONFIGURATION 

Register Description 

TIMEOUT 

Incoming-Message Blocking Timeout: the two least-significant bits of 
the TIMEOUT special register specify the timeout period of the LANai 
watchdog timer. If the LANai 5 chip fails to consume an incoming message 
from the network for the duration of the timeout period, the watchdog 
timer sets the nresJnt bit of the special register ISR (page 10), and, if the 
NRES-ENABLE bit of the special register MYRINET is set, it resets the 
LANai chip. 

Value Timeout Period 
0 1/16 second 
1 1/4 second 
2 1 second 
3 4 seconds 

WINDOW 

SAN-Link Sampling Window: The two least-significant bits of this 
register select the width of the character-time window for the input section 
of the Myrinet-SAN interface. After the chip is out of reset and prior to 
any Myrinet access, the system-specific value (page 12) must be written to 
this register, and a minimum of 10 milliseconds must be allowed for the 
SAN link to reconfigure. 

MYRINET 

Myrinet-Link Configuration: The three least-significant bits of this 
register enable the error-handling features of the Myrinet-SAN interface. 
After the chip is out of reset, this register must be written prior to any 
Myrinet access. 

Bit Name Description 

0 NRES_ENABLE 

When the LANai 5 chip fails to consume an 
incoming message for the duration of the pe- 
riod selected by the TIMEOUT register, the 
nres-int bit of the special register ISR is set 
(page 10). If the NRES-ENABLE is set, the 
chip will be reset when the nres_int bit is set. 

1 CRC8.ENABLE Enables the CRC-8 computation. 
2 CRC32_ENABLE Enables the CRC-32 computation. 

DEBUG 
Hardware-Debug Register: The five least-significant bits of this register 
select one of 32 internal signals to be output on the WIN pin, for timing 
observation. 

CLOCK 

Internal-Clock Phase-Adjusting Register: This special register con- 
trols the on-chip clock generation. During the power-on reset, the system- 
specific value must be written to this register from the EBUS (page 12). 
This register may be modified only while the chip is in reset (page 25). 
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PROGRAMMABLE OUTPUTS 

Register Description 

LED 
LED Register: The least-significant bit of this special register is driven 
to the LED output pin. 

PULSE 

PULSE Register: The three least-significant bits of this special register 
correspond to the three output pins: PO, PI, and P2. When a value of 1 
is written into such a bit, a one-clock-cycle-long pulse is generated on the 
corresponding output pin. 

The special registers described on this page are write-only registers, and reading any of them produces an undefined 
value. 

Note: There is no PULSE register in the LANai5.0 version of the chip. 
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INTERRUPTS 

Register Description 

ISR 

Interrupt Status Register: Contains the chip-status information. 
The ISR bits with the jig (signal) postfix are included for simple host- 
LANai communication. A signal bit can be set only by the LANai processor 
and reset only from the EBUS, or vice versa. 
The ISR bits with the jnt (interrupt) postfix are set by the packet interface 
or the EBUS interface when their corresponding events occur. These bits 
can be reset directly — by writing a 1 into them, or indirectly — in a 
bit-specific way. 

IMR 
Interrupt Mask Register: When a bit of ISR is equal to 1 and the 
corresponding bit of IMR is equal to 1, an interrupt request is asserted for 
the on-chip processor. 

EIMR 
External-Interrupt Mask Register: When a bit of ISR is equal to 1 
and the corresponding bit of EIMR is equal to 1, the INT output pin is 
asserted. 

Accessing some special registers has a side effect of clearing ISR bits. There is up to one-assembly-instruction 
delay between the time when a special register is accessed and the time of the clearing of the corresponding ISR 
bit(s). In case of tight polling loops, this delay can result in a race condition, whereby the program could, for 
example, misinterpret a not-yet-cleared ISR jnt bit for an indication of a new event. The following table specifies 
which special-register write clears which ISR bits: 

Writing            Clears 

RML 

bufLint 
heacLint 
orun4Jnt 
orun2Jnt 
orunl-int 
recvJnt 

SML, SMLT send-int 

IT 
time-int 
wdogJnt 

E2L.CTR e2Lint 

L2E.CTR 12e_int 

The ISR, IMR, and EIMR consist of the following bits (bit 31 is the most significant): 

Bit Name Description 

31 debug-bit 
. This bit is always equal to 1, and can be used for single-stepping the code that runs in user 
context (page ??). 

30 host ^ig 
This bit is set when the LANai processor writes a 1 into it, and reset when a 1 is written into it 
from the EBUS. 

29-24 0 Reserved. 

23-16 
lan7_sig - 
lanO-sig 

Each of these 8 bits is set when a 1 is written into it from the EBUS, and reset when the LANai 
processor writes a 1 into it. 
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Bit Name                                                                         Description 

15-13 0 Reserved. 

12 wakeJnt 
This bit is set when the WAKE input pin is asserted. This bit is deared by the programmer, 
only directly — by writing a 1 into it. 

11 nres-int 

This bit is set by the Myrinet-SAN interface whenever the LANai chip fails to consume an 
incoming message from the Myrinet network for the duration of the period specified by the 
TIMEOUT special register. If the NRESJ3NABLE bit of the MYRINET special register is 1, 
the LANai chip is also reset. By examining the nresJnt bit, one can distinguish between the 
reset-pin-induced and NRES-induced reset. This bit is cleared by the programmer, only directly 
— by writing a 1 into it. 

10-8 
orun4_int 
orun2_int 
orunlJnt 

These bits are set by the packet interface when an overrun condition is detected, i.e., when the 
length in bytes (flits) of the incoming packet (including any CRC-32 and/or CRC-8) is not a 
multiple of 8. The three bits taken together represent the number of bytes in the receive buffer 
beyond the tail byte (0 through 7). For example, if the tail is received in the most-significant byte 
of a double-word, all three bits will be set, indicating that the values of the 7 least-significant 
bytes are undefined. These bits are cleared by the programmer, either directly — by writing a 1 
into them, or indirectly — when RML is written. 

7 wdog-int 
This bit is set by the interrupt timer whenever it makes a transition from 0x80000000 to 
OxTFFFFFFF. This bit is cleared by the programmer, either directly — by writing a 1 into 
it, or indirectly — when IT is written. 

6 timeJnt 
This bit is set by the interrupt timer whenever it makes a transition from 0x00000000 to 
OxFFFFFFFF. This bit is cleared by the programmer, either directly — by writing a 1 into 
it, or indirectly — when IT is written. 

5 12e_int 

This bit is set by the LBUS-^EBUS DMA engine when the L2E-CTR reaches 0 to signal the 
completion of a DMA. This bit is cleared by the programmer, either directly — by writing a 1 
into it, or indirectly — when the L2E.CTR is written. After an LBUS-»EBUS DMA is initiated, 
one must not initiate another such DMA until the 12eJnt bit becomes 1. 

4 e2Unt 

This bit is set by the EBUS-+LBUS DMA engine when the E2L.CTR reaches 0 to signal the 
completion of a DMA. This bit is cleared by the programmer, either directly — by writing a 1 
into it, or indirectly — when the E2L.CTR is written. After an EBUS->LBUS DMA is initiated, 
one must not initiate another such DMA until the e21_int bit becomes 1. 

3 send-int 

This bit is set by the packet interface to signal the completion of a send DMA, i.e., when 
the contents of the send memory buffer and any associated CRCs have been appended to the 
outgoing packet. This bit is cleared by the programmer, either directly — by writing a 1 into it, 
or indirectly — when SML(T) is written. After a send DMA is initiated, one must not initiate 
another send DMA until the send-int bit becomes 1. 

2 buffJnt 

This bit is set by the packet interface when the receive-DMA buffer has been exhausted (the 
last double-word written is at the location pointed to by RML, and RMP=RML+8). This bit is 
cleared by the programmer, either directly — by writing a 1 into it, or indirectly — when RML 
is written. After a receive DMA is initiated, one must not initiate another receive DMA until 
the recv-int bit, the bufLint bit, or both, become 1. 

1 recvJnt 

This bit is set by the packet interface to signal the completion of a receive DMA, i.e., when the 
entire incoming packet has been transferred into the receive memory buffer. This bit is cleared by 
the programmer, either directly — by writing a 1 into it, or indirectly — when RML is written. 

- After a receive DMA is initiated, one must not initiate another receive DMA until the recvJnt 
bit, the buff-int bit, or both, become 1. 

0 headint 

This bit is set by the packet interface to signal that the head of a packet (up to and including 
the double-word pointed to by RMW (RMC)) has been received into the memory. The receive 
DMA continues until: 1) an entire incoming packet has been transferred into the receive memory 
buffer, or 2) the receive-DMA buffer has been exhausted. This bit is cleared by the programmer, 
either directly — by writing a 1 into it, or indirectly — when RML is written. 
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SPECIAL-REGISTER SUMMARY 

Register Read Write Description Offset Page 
EBUS LANai EBUS LANai 

BURST + + EBUS-DMA Configuration 0x120 5 
CLOCK + Clock Configuration 0xlF8 7 

CTR + + + + EBUS-DMA Counter 0x78 5 
DEBUG + + Hardware Debugging 0x138 7 

E2L.CTR + + + + Initiate E->L DMA 0xA8 5 
E2L.EAR + + + + E->L EBUS Address 0x98 5 
E2L-LAR + + + + E-^L LBUS Address 0x88 5 

EIMR + + + + External-Interrupt Mask 0x58 9 
IMR + + LANai-Interrupt Mask - 9 
ISR + + + + Interrupt Status 0x50 9 
IT + + + + Interrupt Timer 0x60 6 

L2E.CTR + + + + Initiate L->E DMA OxAO 5 
L2E.EAR + + + + L-+E EBUS Address 0x90 5 
L2E.LAR + + + + L->E LBUS Address 0x80 5 

LAR + + + + EBUS-DMA LBUS address 0x70 5 
LED + + LED Output Pin 0x140 8 

PULSE + + PO, PI, P2 Output Pins 0xB8 8 
MP + + Memory Protection 0x150 6 

MYRINET + •+ Myrinet-Link Configuration 0x130 7 
RMC + + + + Receive-DMA Header CRC 0xD8 4 
RML + + + + Initiate Receive DMA 0xE8 4 
RMP + + + + Receive-DMA Buffer OxEO 4 
RMW + + + + Receive-DMA Header OxDO 4 
RTC + + + + Real-Time Clock 0x68 6 
SA + + Send-DMA Alignment 0x118 3 

SMC + + + + Send-DMA Header CRC 0x110 3 
SMH + + + + Send-DMA Routing Header 0xF8 3 
SML + + + + Initiate Send DMA 0x100 3 

SMLT + + + + Initiate Send DMA with Tail 0x108 3 
SMP + + + + Send-DMA Buffer OxFO 3 

TIMEOUT + + NRES-Timeout Selection 0x128 7 
WINDOW + + Sampling-Window Selection 0x148 7 

All special registers except for the IMR are memory-mapped. The IMR is an internal register of the LANai 
on-chip processor and is not accessible from the EBUS. The memory-mapped special registers can be accessed both 
by the LANai on-chip processor and from the EBUS (except for the special register CLOCK, that can be accessed 
only from the EBUS). 

To access a memory-mapped special register from the LANai processor one should use the address of OxFFFFFEOO 
plus the offset of that special register. The base address for EBUS access of memory-mapped special registers is 
application-specific; consult system documentation for details. 

When accessing the special, memory-mapped registers, the regular memory arbitration mechanism described on 
page 2 applies. The mutual exclusion at any higher level is the responsibility of the programmer. 
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INITIALIZATION 

During the power-on reset, the system-specific value listed below must be written to the CLOCK special register 
from the EBUS, to initialize the on-chip clock generation, and the chip must be held in reset a minimum of 10 
milliseconds to allow the on-chip PLL to stabilize. 

After chip reset, the on-chip processor begins executing code in the system context, starting from the address 0. 
The state of the nres.int bit in the ISR upon reset indicates whether the reset has been a regular, reset-pin 

initialization (0), or an NRES-induced reset (1). 
All the remaining bits of ISR are equal to 0, except the debug.bit, which is equal to 1. 
The MP register is initialized to the no-memory-protection state. 
The IMR and the EIMR special registers are undefined and should be initialized by the programmer. 
All other special registers are initialized to 0 upon reset. 
After the chip is out of reset and prior to any Myrinet access, the system-specific value listed below must be 

written to the WINDOW register to configure the Myrinet-SAN interface, and a minimum of 10 milliseconds must 
be allowed for the SAN link to reconfigure. 

SYSTEM-SPECIFIC INITIALIZATION 

Version CLOCK WINDOW 
LANai5.0 0x06698200 3 

LANai5.2 
40MHz CLK 

10ns LBUS SRAM 
0x08298281 3 
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SIMPLE MESSAGE SENDING AND RECEIVING EXAMPLES 

In all the examples, data is represented by the following symbols: 

'm'  - message byte, used in CRC-32 computation 
'h'  - header byte, not used in CRC-32 computation 

- don't-care byte 
'c8' - CRC-8 byte 
'c32' - one of four CRC-32 bytes 
'v8' - a verified CRC-8 byte (zero if CRC-8 caught no errors) 
cv32' - one of four verified CRC-32 bytes (zero if CRC-32 caught no errors) 

Example #1: 

CRC-32 off 
CRC-8  off 

sender () 
{ 

SMP « 0x1000; 
SMLT - 0x1010; 

> 

receiver () 
{ 
RMP = 0x2000; 
RML = 0x3000; 

> 

sender memory 
msb lsb 
+ H + + y H + + + 

SMP -> Imlmlmlmlmlmlmlml 
(start)  + + +—-+ *■ H + + + 

lm|m|m|m|m|m|m|m| 
^ +—+ y + +_—+ + + 

SMLT -> I . I . I . I . I . I . I . I . I 
+ .1 + + _( H + + + 

SMP ->  I . I . I . I . I . | . I . I . I 
(end)   4 + + + ► H + + + 

bytes in Myrinet 
+ + + + + H + + + 
|m|m|m|m|m|mlm|m| 
4 _+ + + y H _+ + + 
Imlmlmlmlmlmlmlml 
+ (. + 1 !• .) + + + 

I 0 I 
+-—+ 

receiver memory 
msb lsb 
.( +_—H H (. +_—+ + + 

RMP -> Imlmlmlmlmlmlmlml 
(start)  + + + +—-+ -i + + + 

Imlmlmlmlmlmlmlml 
•i +—+—+ ).—H +—+—+ 

I 0  I   .   I   .   I   .   I   .   I   .   I   .   I   .   I 
+ + + + ). H + + + 

RMP ->    I   .   I   .   I   .   I   .   I   .   I   .   I   .   I   .   I 
(end)        +—H +—+ ► 1 +—+—+ 

+—+—+—+—_+—H +—+—+ 

RML ->    I   .   I   .   I   .   I   .   I   .   I   .   I   .   I   .   I 
+ + + + y +_—+ + + 
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Example #2: 

CRC-32  off 
CRC-8   on 

sender () 

SMP = 0x1000; 
SMLT - 0x1010; 

} 

receiver () 
{ 
RMP « 0x2000; 
RHL « 0x3000; 

} 

sender memory 
msb lsb 
+_—+ +—+ y H + +—+ 

SMP ->    Imlmlmlmlmlmlmlml 
(start)      + + + + ^ + +—+—+ 

|m|m|m|m|m|m|m|m| 
+ + +—+ + H + +—+ 

SMLT ->  I   .   I   .   I   .   I   .   I   .   I   .   I   .   I   .   I 
+ + + + y + + +—+ 

SMP ->    I   .   I   .   I   .   I   .   I   .   I   .   I   •   I   .   I 
( end)        + + + *■ + ■< + +—+ 

bytes in Myrinet 
+ + + + y H + + + 

Imlmlmlmlmlmlmlml 
+ + + + h 4 + + + 

Imlmlmlmlmlmlmlml 
+ + + + -H +- + + + 

I  c8| 
+ + 

receiver memory 
msb lsb 

RMP ->    Imlmlmlmlmlmlmlml 
(start)      •» + + 1 •—-• ■< + + 

Imlmlmlmlmlmlmlml 
+—+—+—+—+—4 +—+—+ 

I v8|   .   I   .   I   .   I   .   I   .   I   .   I   .   I 
+ + + +——< +-—+-—+ v 

RMP ->    I   .   I   .   I   .   I   .   I   .   I   .   I   .   I   .   I 
( end)        + + H H •■ ■* + +—+ 

+ + H (. y H + ^ + 

RML ->    I   .   I   .   I   .   I   .   I   .   I   •   I   .   I   •   I 
+ + + + y +-—+ + + 
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Example #3: 

CRC-32  on 
CRC-8   on 

sender () 

SMP = 0x1000; 
SMLT = 0x1010; 

> 

sender memory 
msb lsb 
+ + + + K +_—+ + + 

SMP -> |m|m|m|m|m|m|m|m| 
(start)  +—+•—+—+—+—H +—+—+ 

|m|m|m|m|m|m|mlml 
+—+—+—+ 1-—H +—+—+ 

SMLT -> | . | . I . I . I . I . I . I . I 
+—+—+—+ h—^ +—+—+ 

SMP -> I . I . I . I . I . I . I . I . I 
(end)   + + + + + H + + + 

bytes in Myrinet 
+ + + + 1- .| + + + 

Imlmlmlmlmlmlmlml 
+ + + + 1- H + + + 

Imlmlmlmlmlmlmlml 
+ + + + K 4 + + + 

Ic32|c32|c32|c32l  c8l 
+ + + + 1- + 

receiver 0 
{ 

RMP = 0x2000; 
RML - 0x3000; 

} 

receiver memory 
msb lsb 

RMP ->    Imlmlmlmlmlmlmlml 
(start)      + + + + 1~;—■• + + + 

Imlmlmlmlmlmlmlml 
+_—+ H + (. H + + + 

Iv32lv32|v32|v32l v8| . I . I . I 
+_ + + + 1 H + + + 

RMP -> | . | . I . I . I . I . I . I . I 
(end)   + + + + ► ■* + + + 

+ + + + (. +-—+ +-—+ 

RML -> | . | . I . I . I . I . I . I . I 
+ + + + + 4 + + + 
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Example #4: 

CRC-32 on 
CRC-8 on 
SMH     used 

sender () 
{ 

SMP » 0x1000; 
SMH = 0x1008; 
SMLT ■ 0x1020; 

} 

sender memory 
msb lsb 
+ + + + + H + +—+ 

SMP -> Ihlhlhlhlhlhlhlhl 
(start)  + + + + ► +-—+ + + 
SMH -> Ihlhlhlhlhlhlhlhl 

+ + +—+—_+ ^ ^ + + 

|m|m|m|mlm|m|m|m| 
+—+—+—+—_+—+_—+—+—+ 

|mlm|m|m|m|m|m|m| 
+—+—+—+ K—+_—+—+—+ 

SMLT -> I . I . I . I . I . I . I . I . I 
•i + + + (. ^ + + + 

SMP -> I . | . I . I . I . I . I . I . I 
(end)   ■* + +—+—-+ ■• + + + 

bytes in Myrlnet 
+_ j_—+ + (. 4 _+ H + 

Ihlhlhlhlhlhlhlhl 
+—.+_—+_—+ 1.—+_—+—+—+ 

Ihlhlhlhlhlhlhlhl 
+ + +—_+ (. H H + + 

|m|m|m|m|m|mlm|m| 
+_—►_—+—+——f—+-—+-—i-—+ 
|m|mlm|m|m|m|m|m| 
+_—+ (_—». h i + +-—+ 

Ic32|c32|c32|c32| c8| 

receiver () 
{ 
RMP = 0x2000; 
RML ■ 0x3000; 

} 

receiver memory 
(assuming the first 16 bytes 
have been stripped by switches) 
msb lsb 
+_ +_ + + K +_ (. + + 

RMP -> |m|mlmlm|m|m|m|ml 
(start)  +—-H +—■• ►—H +—+—+ 

|m|m|m|mlm|m|m|ml 

Iv32|v32|v32|v32| v8|   .   I   .   I   .   I 
+ + +-—+ h H -I + + 

RMP ->    I   .   I   .   I   .   I   .   I   .   I   .   I   .   I   .   I 
(end)        ■• + + ■* ► ■• + + + 

+ + +—+ * .| + + + 

RML ->    I   .   I   .   I   .   I   .   I   .   I   .   I   .   I   .   I 
+ + + + y +_—+ h + 

60 



Example ! #5: 

CRC-32 on 
CRC-8 on 
SMH used 
SA used 

sender 0 
{ 
SMP = 0x1000; 
SMH = 0x1008; 
SA - 0x5; 
SMLT = 0x1020; 

> 

sender memory 
msb lsb 
+ +—+—+ + .| + + + 

SMP -> I . I . I . I . I . I h I h I h I 
(start)  +—+—+—+ ►—+-—+—+—+ 
SMH -> Ihlhlhlhlhlhlhlhl 

+ + + + y H + + + 

|m|m|m|m|m|m|m|m| 
+ + +—+ 1 H + + + 

Imlmlmlmlmlmlmlml 
+ +—H +_—+ ^ + (. + 

SMLT -> | . | . I . I . I . I . I . I . I 

SMP ->  I . I . I . I . I . I . I . I . I 
(end)   + + +—+—+ H + •* + 

bytes in Myrinet 
+ H + + 

I h I h I h I 

Ihlhlhlhlhlhlhlhl 
+ 1 .) + y H + + + 

|m|m|m|m|m|m|m|m| 
+ 1 + ^ 1- H + + + 

Imlmlmlmlmlmlmlml 
+ 1. H +—-+ +- + + + 

Ic32|c32|c32|c32| c8| 
+ ^ H + ► + 

receiver () 
{ 
RMP - 0x2000; 
RML - 0x3000; 

} 

receiver memory 
(assuming the first 11 bytes 
have been stripped by switches) 

msb lsb 
+ + + + 1 H + + + 

RMP ->    Imlmlmlmlmlmlmlml 
(start)      +—-+—+—+ ►—+-—+ •■—+ 

Imlmlmlmlmlmlmlml 
+—+—+—+ i.—H +—+—+ 

Iv32|v32|v32|v32| v8| . I . I . I 
+ h + + y H H H + 

RMP -> I . I . I . I . I . I . I . I . I 
(end)   +—+—+—+—-+—•* +—+—+ 

+—+—+—+ h—H H +—+ 

RML -> I . I . I . I . I . I . I . I • I 
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Example #6: 

CRC-32 on 
CRC-8 on 
SMH used 
SA used 
SMC used 
RMC used 

sender 0 
< 

SMP » 0x1000; 
SMH ■ 0x1008; 
SA = 0x5; 
SMC « 0x1020; 
SMLT = 0x1038; 

> 

sender memory 
msb                     lsb 
+ + + + +. +. + + + 

SMP -> I . I . I . I . I . I h I h I h I 
(start)  + t- + + K H + + + 
SMH -> Ihlhlhlhlhlhlhlhl 

+ 4 + + + —f_ + + + 

|m|m|m|m|m|m|m|m| 
+—+—+—+—_+ .| +—+—+ 

|m|m|m|m|m|m|m|m| 
■i +—+.—+—_H +_—+—+—+ 

SMC -> I . | . I . I . I . | . | . | . | 
H + + + 1 H + 1- + 

lmlm|m|mlm|m|m|m| 
+ + + h ^ ^ + + + 

|m|m|m|m|m|m|m|m| 
+ ^ + + 1 1 + 1. + 

SMLT -> I . .1 . I . | . I . | . | .' | . | 
+ +---+ + h +-—+ + + 

SMP ->  | . | . | . | . | . | . | . | . | 
(end)   ■« H + + 1 1 + H + 

partial CRC-32 -> 
(on m's up to here) 

full CRC-32 -> 
(on m's up to here) 

bytes in Myrinet 
4 ►—+—+ 

h I h I h I 

Ihlhlhlhlhlhlhlhl 

m|m|m|m|m|m|m|m| 
+ +- + +- f. H + + + 

|m|m|m|m|m|m|m|m| 
+ H ■( H 1 •! + + + 

Ic32|c32|c32lc32| 0 I 0 | 0 | 0 | 

I m I m I m I m I m 

|m|mlm|m|m|m|m|m| 
+ + + +_ (.—i +—+—+ 

Ic32|c32|c32|c32l c8| 
+ + + + K + 

m I m I m I 
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receiver () 

{ 
RMP = 0x2000; 
RMC = 0x2010; 
RML « 0x3000; 

> 

receiver memory 
(assuming the first 11 bytes 
have been stripped by switches) 
msb lsb 
+ + + + h H + + + 

RMP ->    |m|m|m|m|m|m|m|m| 
(start)      + + + + *■ H +—+ + 

|m|m|m|m|m|m|m|ml 
+ +. + + + H + + + 

RMC ->     Iv32|v32|v32|v32| 0  I  0  I  0  I   0  I 
+ + + + 1- H + + + 

|m|m|m|m|m|m|m|m| 
+ H + H f H +—+ + 

|m|m|m|m|m|m|m|ml 
+ + + +—_+ H + +-—+ 

Iv32|v32|v32|v32| v8l   .   I   .   I   .   I 
+ + + + 1- H + + + 

RMP ->     I   .   I   .   I   .   I   .   I   .   I   .   I   .   I   .   I 
( end)        + + + + + ■• + + + 

+ +_ + + y. +_—+ + + 

RML ->    |   .   I   .   I   .   I   .   I   .   I   .   I   .   I   •   I 
+ + + + h +-—+ + + 
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ELECTRICAL CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS 

Symbol Rating Value Unit 

Vu Power Supply Voltage -0.5 to +4.6 V 
Mm »out Terminal Voltage (except Vdd) -0.5 to 1^+0.5 V 

lout Output Current 100 mA 
PD Power Dissipation 3 W 

J-biaa Temperature Under Bias -55 to 125 °c 
Tatg Storage Temperature -55 to 125 °c 
TA Operating Temperature 0to70 °c 

RECOMMENDED OPERATING CONDITIONS 

Symbol Parameter Min Typ Max Unit 

VlL 

Power Supply Voltage 
Input High Voltage 
Input Low Voltage 

3.0 
2.2 
-0.3 

3.3 3.6 
Vdd+0.3 

0.8 

V 
V 
V 

DC CHARACTERISTICS 

Symbol Parameter Min Max Unit 

hi Input Leakage Current - ±1.0 M 
IhO Output Leakage Current - ±1.0 M 

VOL(IOL = 5mA) Output Low Voltage - 0.4 V 
VOH(IOH = -5mA) Output High Voltage 2.4 - V 

CAPACITANCE (TA = +25°C, / = 1.0MHz, dV = 3V) 

Symbol Parameter Max Unit 

Ci 
Ciio 

Input Capacitance 
I/O Capacitance 

5 
8 

pF 
pF 

AC TEST LOADS 

-i ==-  Z0 = 50ft -± RL = 50ft 

VL = Via/2 
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OUTPUT DRIVERS 

The output drivers and the tri-state drivers are of three different strengths.   For purely capacitive loads, the 
following are the typical delay values at VM = 3.3Vi T„ = 25°C : 

Output Delay 

A03 - A23, A18, A20, A22, OE, WEO - WE7 outL ■— 0.2ns + C\nM\ \pF * 0.015ns/pF 
EDOO - ED63 outs = 0.2ns + C\nM\ \pF * 0.030ns/pF 

otherwise out = 0.2ns + ClnaH pF] * 0.042ns/pF 

For power-supply voltage of 3.3V ± 10%, ambient temperature from 0° to 70°C, and the acceptable manufacturing-process 
variation, output-driver delays have ±50% variation. 

The full hspice model is available upon request. 

Note: In the LANai5.0 version of the chip, the WE drivers are weaker, the same strength as the ED drivers shown above. 
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PINOUT 

10 11 13 13 14 IS IS IT II 19        20        31 23        23 

Vdd 00 17 14 

00 Vdd 00 16 

m 00 Vdd IB 

«23 ra 1ST Vdd 

TO* »AXE m Ejsr 

DC •IN INT Vdd 

E2J SB RCUC UD 

00 E2LP L2EA cue 

EK7 BUSY 12EP Vdd 

em EIE5 EVES FRDY 

aa Ein ESE2 EBE3 

GND E063 Vdd 

ED62 ED61 ED» EDS 

EDSB E057 ED56 ED54 

EDSS ED53 EDS2 Vdd 

00 ED51 ED49 ED47 

ED» ED48 ED« EDO 

00 ED45 ED42 Vdd 

ED44 ED41 E039 »MEM 

ED4B DMA EEC Vdd 

RHEM GND »« 

00 Vdd oo L2ES 

Vdd 00 SPEC ED37 

16 OO       CB GND       05       00 DBL DO AM AM All 00 A17 

13 Vth LVdd 04 LVdd LVdd OAK PLL AB5 AB9 A13 AIS A1B 

15 12       0» 02 BIAS 07 OAL AB3 JM6 Alt A14 A1E A2B 

ID Vdd       II 01 Vdd 05 OB Vdd AB7 A12 Vdd A19 DC 

Mvricoi 

LANai5 

RFIFO Vdd ED34 ED» Vdd EDZ3 ED18 Vdd ED» EDM Vdd DS1 057 

ED36 ED35 ED31 ED27 ED25 ED21 ED17 ED14 EDI« EDK EDB2 063 DSt 

ED36 ED32 ED29 ED26 ED24 ED29 ED16 ED13 EDU EDB7 EDO EMI D62 

ED33 GND ED28 OO ED22 ED19 ED15 00 ED12 EDM ED» OO EDM 

GND A22 K2 IE5 00 Vdd 

A21 «a ra GND Vdd GND 

SB K3 w? Vdd GND oee 

Vdd KB Vdd Dei W3 

SELR D82 DM DJ7 

Vdd DBS DM 00 

DK D» Oil D13 

Die D12 D14 OO 

Vdd D15 D16 DIB 

D17 D19 D2B 021 

022 D23 D24 D25 

Vdd D27 D26 00 

D31 038 D29 D2B 

D36 034 033 032 

Vdd D3B 037 D35 

D43 DM D39 OO 

D47 D44 D42 D41 

Vdd D4B D45 00 

SB DS1 D49 D46 

Vdd 52 Vdd 54 D52 05) 

056 DS3 Vdd GND S16 

059 055 St DID Vdd OO 

GND 058 D54 SI 00 Vdd 

304-pin SuperBGA (top view) 
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CLOCKING 

Pin I/O Description 

CLK I Clock: The main clock input. 

RCLK I Reference Clock: The additional clock-reference input. 

CLK J \_J 
rCLK 

THCLK THCLK 

:   \ /   \ /   \ /—v_ 

Symbol Parameter Min Max 

TCLK Clock period 20ns 20/is 
THCLK Clock half-period 10ns 10/is 

CLK is the main clock input, and, except for the Myrinet-SAN interface (page 39), the entire chip works off of this clock. 
The internal chip clocks are derived from CLK, and there are several internal-clocking configurations, selected by the special 
register CLOCK (page 7): 

Bit 

6-4 

3-2 

Name Description 

PLL 

MULT 

SELR 

DBL 

When this bit is set, the on-chip PLL can be used to produce a symmetric on- 
chip clock, relaxing the minimum clock half-period requirement to 8ns. Minimum 
clock period requirement remains 20ns. 

Frequency of the internal chip clock (ICLK) is a multiple of the frequency of the 
CLK signal. The three MULT bits determine the frequency-multiplication factor: 

Value Internal Clock 
0 lxCLK 
1 1.5 x CLK 

"    2 2xCLK 
4 3xCLK 
6 4xCLK 

Reserved. 
In systems where the CLK input is connected to a clock that may be stopped 
for arbitrarily long time periods (such as the PCI bus clock), the on-chip PLL 
requires an additional clock reference on the RCLK input. This clock reference 
must have duty cycle of 45-55%, maximum frequency of 60MHz, and its period 
must be smaller than the smallest possible period of CLK on that system. 
The maximum clock period and half-period requirements remain 20/xs and 10/xs, 
respectively. 

If this bit is 1, there are two LBUS memory accesses per clock cycle. If this bit 
is 0, there is one LBUS memory access per clock cycle. 

Note: In the LANai5.0 chip, the PLL, SELR, and DBL bits are connected to the three input pins and cannot be modified by 
the programmer. 
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SYNCHRONOUS INPUTS AND OUTPUTS 

CLK 

Input 

Output 

I 
V 

XZDC 
I 

\ 

x^x: 
3 

\ 

rz) 
x 

\ 

LJC 
) 

«JW 

\ 

xzx X 

X X 

Symbol Parameter Min Max 

tis Synchronous-input setup time 3ns 
tlH Synchronous-input hold time Ons 
to Synchronous-output delay (ICLK = CLK) Ins 7ns 
to Synchronous-output delay (ICLK = 1.5 x CLK) Ins iTcLK + 7ns 
to Synchronous-output delay (ICLK = 2 x CLK) Ins \TCLK + 7ns 
to Synchronous-output delay (ICLK = 3 x CLK) Ins \TCLK + 7ns 
to Synchronous-output delay (ICLK = 4 x CLK) Ins JTCLK + 7ns 
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RESET SEQUENCE 

Pin I/O Description 

RST synch. 
I 

Reset: The main reset input. 
During the power-on reset, the special register CLOCK, which controls the on- 
chip clock-generation, must be initialized. Note that, unlike with other special 
registers, both RST and ERST must be asserted while the CLOCK is written. 
This register need not be initialized during a non-power-on reset. 

synch. 
I 

EBUS Reset: This additional reset input resets the LANai circuitry associated 
with EBUS access. When the RST input is asserted and ERST is not, the EBUS 
access is enabled so that, for example, code for the LANai processor can be loaded 
into the LBUS memory. 

ERST 

Non-Power-On Reset Sequence 

CLK 

RST 

ERST    T 

EÖE      _ 

TZA. 
T=l 

A l 

nx 
JZ2L 

rz± 
/—\ 

clock eyclm* 

JZJL 

I—v 
mi: limum 0 clock eycl *a 

ru 

\ /—v_ 
jzzr 
TZ7 

ED 

Power-On Reset Sequence 
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LBUSINTERFACE 

Pin I/O Description 

DOO - D63 I/O LBUS Data: 64-bit bi-directional data bus (bit 63 is the most significant). 

A03 - A23 o 
LBUS Address: The LBUS address pins. The internals of the LANai 5 chip 
support 32-bit addresses, but pin count limits the LBUS address space to 16 
megabytes. 

Ä18, Ä2Ö, Ä22 0 
LBUS Address Complement: These three signals are provided for address 
decoding when using multiple banks of SRAM chips. 

WE0-WE7 o 
LBUS Write Enable: 8 write enable signals, one for each byte in the 64-bit 
word. The LANai is a big-endian machine, and WEO corresponds to the smallest 
byte address, i.e., to the most-significant byte. 

ÖE 0 LBUS Output Enable: This signal controls the direction of the LBUS data 
bus. 

A 

ÖE 

WE 

°    I 

I 

I 

Ao t 
Do 

RDS 

Ai 

JL y* 

i 
oir 

WBV 
:L 

A2 

*WD 

XZZ 

«ZtVD *WDH «WDH 

*WD 

X 

/•a 

I 

I 

Symbol Parameter Min Max 

TlCLK Period of the internal LANai clock (page 23). 
tLBVS LBUS memory cycle (DBL=0) TlCLK 
tLBVS LBUS memory cycle (DBL=1, PLL=1) TICLK/2 - 0.5ns 

tA Address delay outt out/, + 0.5ns 
toB Output-enable delay OXlth outh + 0.5ns 

tWEL Write-enable assertion delay TwCLK + OUtL TWCLK + outh + 0.5ns 
tWEH Write-enable deassertion delay oath outi + 0.5ns 
tRDS Read-data setup time Ins 

tRDH Read-data hold time 0ns 

twD Write-data delay (LANai limited) out out + 4ns 

tzWD Write-data delay (SRAM limited) out 
twDH Write-data hold time 0ns 0.5ns 

toEZ Data-drivers turn-off time 0ns 0.5ns 

TwCLK 
CLOCK-register-controlled delay which en- 
sures that the WE is asserted only after the 
address is stable 

0ns 4ns 
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LBUS INTERFACE 

Pin I/O Description 

D00-D63 I/O LBUS Data: 64-bit bi-directional data bus (bit 63 is the most significant). 

A03 - A23 o 
LBUS Address: The LBUS address pins. The internals of the LANai 5 chip 
support 32-bit addresses, but pin count limits the LBUS address space to 16 
megabytes. 

Äl8,Ä2Ö,Ä22 0 
LBUS Address Complement: These three signals are provided for address 
decoding when using multiple banks of SRAM chips. 

WE0-WE7 0 
LBUS Write Enable: 8 write enable signals, one for each byte in the 64-bit 
word. The LANai is a big-endian machine, and WEO corresponds to the smallest 
byte address, i.e., to the most-significant byte. 

ÖE o LBUS Output Enable: This signal controls the direction of the LBUS data 
bus. 

A 

ÖE 

WE 

'LBUS 

1 Ao I 
X Do 

Ai 

JE 
lRDH 

1 
Olf 

Zi. 

Aa 

lZWD 

JIZ± 

Ö4P 
»W DH *WDH 

*WD 

JZZ±: 

DA 

I 

X 

Symbol Parameter Min Max 

TlCLK Period of the internal LANai clock (page 23). 
tLBUS LBUS memory cycle (DBL=0) TlCLK 
tLBUS LBUS memory cycle (DBL=1, PLL=1) TICLK/2 - 0.5ns 

tA Address delay OUtL outL + 0.5ns 
toE Output-enable delay OUtL outh + 0.5ns 

tWBL Write-enable assertion delay TwCLK + OUtL TWCLK + outL + 0.5ns 
twEH Write-enable-deassertion delay OXitL outi + 0.5ns 

tRDS Read-data setup time Ins 

tRDH Read-data hold time 0ns 

twD Write-data delay (LANai limited) out out + 4ns 

tzWD Write-data delay (SRAM limited) out 

tWDH Write-data hold time 0ns 0.5ns 

toEZ Data-drivers turn-off time 0ns 0.5ns 

TwCLK 
CLOCK-register-controlled delay which en- 
sures that the WE is asserted only after the 
address is stable 

0ns 4ns 
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The LANai 5 chip, starting with version 5.2, includes the circuitry that enables it to delay the timing of the LBUS data 
bus relative to the LBUS address bus. Asynchronous SRAM chips typically guarantee that the read data will not change for 
a specified period of time after an address change. The LANai 5 chip can take advantage of this feature, which may relax the 
SRAM access-time requirement. The table below specifies the timing information in the general case, with the LBUS-data 
timing delayed from the LBUS-address timing by TLCLK- 

Symbol Parameter Min Max 

tbBUS LBUS memory cycle (DBL=0) TlCLK 
tlBUS LBUS memory cycle (DBL=1, PLL=1) TICLK/2 - 0.5ns 

tA Address delay OUtL outL + 0.5ns 
toE Output-enable delay TLCLK + outL TLCLK + outL + 0.5ns 

tWEL Write-enable assertion delay TWCLK + OUtL TWCLK + outL + 0.5ns 
t\VEH Write-enable deassertion delay OUtL outL + 0.5ns 
tRDS Read-data setup time -TLCLK + Ins 
tRDH Read-data hold time TLCLK 

t\VD Write-data delay (LANai limited) TLCLK + out max(TLCLK,4ns) + out 

tzWD Write-data delay (SRAM limited) out 

twDH Write-data hold time TLCLK TLCLK + 0.5ns 
toEZ Data-drivers turn-off time 0ns 0.5ns 

TwCLK 
CLOCK-register-controlled delay which en- 
sures that the WE is asserted only after the 
address is stable 

0ns 4ns 

TLCLK 

CLOCK-register-controlled delay which de- 
lays the LBUS data timing relative to the 
LBUS address timing 

0ns 4ns 

The following bits of the special register CLOCK (page 7) control TWCLK and TLCLK' 

Bit Name Description 

15-12 WCLK These four bits control the timing of the WE pins, to ensure that they are asserted 
only after the address is stable. 

11-8 LCLK These four bits control the timing of the OE and D, to delay the LBUS data 
timing relative to the LBUS address timing. 

Note: The WCLK timing can be arbitrarily adjusted to conform to the SRAM at hand. However, changing the LCLK timing 
may require that some additional, internal chip timing be adjusted as well. The information required is beyond the scope of 
this document. 
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EBUS INTERFACE 

The LANai 5 EBUS is a 64-bit wide, synchronous, pipelined interface, optimized for burst memory access. 
The simplest EBUS operation is writing a value into a LANai special register. Since the LANai special registers have at 

most 32 bits, and the LANai address space is also 32 bits, the address and data are simultaneously presented on the 64-bit 
ED bus. 

Writing into the LANai LBUS memory is a two-stage operation: first the address of the memory access is written into the 
special register LAR (LBUS Address Register), and later the 64 data bits are presented on the ED bus, along with the request 
that they be written into the memory at the address specified by the LAR. The side effect of the memory-write request is that 
the LAR is incremented by 8, so that consecutive memory locations can be written without having to write the LAR again. 

The read accesses of special registers and LBUS memory are done in a similar fashion, but the read data becomes available 
with the latency of three clock cycles. To be able to sustain the full EBUS bandwidth, the read data is placed into the 
three-double-words-deep FIFO. The most distinguishing characteristic of the EBUS interface is that the consumption of data 
from the FIFO is independent of the read requests, as long as the FIFO is kept from overflowing. For one particular, often-used 
case of reading a block of data from the LBUS memory, the LANai provides a mechanism that can be used to keep the FIFO 
from overflowing (page 32). The LBUS Access Counter (CTR) is used to specify the size of the data block. 

The EBUS functionality described so far constitutes the core EBUS interface. There are several special registers (in 
addition to the LAR, CTR, and FIFO) that are used to provide additional functionality that may be useful when interfacing 
to standard I/O buses. However, all the additional features are experimental and may not be supported in future versions of 
the LANai chips. 

CORE EBUS INTERFACE 

4 

command 

-*    FRDY 

—    RFIFO 

-/■ >    ED 

EOE 

A ■*— 

24 

-/  LAR • CTR 

/ \ H H 
.. "32                                   * "32 

D 
B4 «4 / / / ED 

WE    < -h EWE 
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FULL EBUS INTERFACE 

4 

command 

->    BUSY 

\ 1 

«4 
1 f 

*•    FRDY 

RFIFO 

EOE 

34 

A    < /- 

L3E- 

LAR 

E2L- 

LAR 

L3B- 

CTR 

E2L- 

CTR 

L2E. 

BAR 

E2L- 

EAR 

-*•    L2EP 

L2EA 

L2ES 

-f- >    status 

     SNB 

E2LA 

->    E2LP 

D    * /- 

WE    < -h 

ED 

EWE 
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Pin I/O Description 

EÖE synch. 
I 

EBUS Output Enable: This signal controls the direction of the ED bus. If, 
at a rising CLK edge, the EOE is asserted and the ERST is not, the ED pins are 
outputs during the immediately following clock cycle. 

EDOO 

ED63 

synch. 
I/O 

EBUS Data: 64-bit bi-directional address and data bus (bit 63 is the most 
significant). 

synch. 
I 

EBUS Write Enable: 8 write enable signals, one for each byte in the 64-bit 
word. The LANai is a big-endian machine, and EWEO corresponds to the smallest 
byte address, i.e., to the most-significant byte. 
The values of these signals affect only the Write Memory EBUS command. 

EWEO 

EWE7 

ED Timing 

CLK 

EOE 

ERST 

ED 

Symbol Parameter Min Max 

tEDZ Output release time Ins 3ns 
tED Output delay Ins 7ns 
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Pin I/O Description 

WIN 0 
Chip Window: This signal should be connected to a test point that can be 
used for timing observation of several internal chip signals. The special register 
DEBUG selects which internal signal is to be output on the WIN pin. 

LED synch. 
0 

LED Output: This general-purpose output is controlled by the least-significant 
bit of the special register LED. 

PO 
PI 
P2 

synch. 
0 

PULSE Outputs: This three outputs are controlled by the least-significant bits 
of the special register PULSE. When a value of 1 is written into such a bit, a 
one-clock-cycle-long pulse is generated on the corresponding output pin. There 
is no PULSE register in the LANai 5.0 version of the chip, and the three pins are 
used as inputs named DBL, SELR, and PLL, respectively (page 23). 

INT synch. 
0 

Interrupt Request: This output is asserted if a bit in the special register ISR 
(Interrupt Status Register) and the corresponding bit in the special register EIMR 
(External Interrupt Mask Register) are both equal to 1. 

WAKE synch. 
I 

Wakeup: When this input is asserted, the wakeJnt bit in the special register 
ISR (Interrupt Status Register) is set. 

FRDY synch. 
O 

FIFO Ready: This signal indicates that the LANai EBUS FIFO has at least 
one word in it. 

RFIFO synch. 
I 

Read FIFO: When both RFIFO and FRDY are asserted at a rising CLK edge, 
the LANai EBUS FIFO is advanced. 

BUSY synch. 
O 

EBUS Interface Busy: This signal is asserted while the read DMA is going on. 
No EBUS command (except for NOP and STOP) may be issued while BUSY is 
asserted. 

E2LP synch. 
O 

EBUS-+LBUS DMA Pending: This signal is asserted when the LANai 
E2L.CTR special register has a non-zero value. 

L2EP synch. 
O 

LBUS-fEBUS DMA Pending: This signal is asserted when the LANai 
L2E.CTR special register has a non-zero value. 

E2LA synch. 
I 

EBUS->LBUS DMA Advance: When this signal is asserted, E2L-LAR and 
E2L-EAR are incremented by 8, and E2L.CTR is decremented by 8. 
During a LANai-initiated E2L DMA, the E2LA signal must be asserted simulta- 
neously with the WRM command, so as to keep the above three registers up to 
date. 

L2EA synch. 
I 

LBUS-+EBUS DMA Advance: When this signal is asserted, L2E-LAR and 
L2EJ3AR are incremented by 8, and L2E.CTR is decremented by 8. 
For non-pipelined outside circuitry, this signal should be asserted simultaneously 
with the RFIFO signal, so as to keep the above three registers up to date. 
For applications where pipelined outside circuitry connects to an abortable system 
bus, when a system-bus transaction is aborted the outside circuitry may have 
already fetched one or more words of incoming read-DMA data from the LANai. 
The L2EA signal can be used such that the above three registers keep the correct 
record of the successfully completed transactions on the system bus. If so, upon 
an abort on the system bus, the outside circuitry may STOP any pending LANai 
DMA, flush the FIFO, and later resume the LANai DMA from the correct values 
of L2EJLAR, L2E.EAR, and L2E.CTR. 

SPEC 
DMA 

WMEM 
RMEM 

synch. 
I 

Special, DMA, Write Memory, Read Memory: These 4 signals together 
specify the EBUS command, as specified below. 
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Command    SPEC DMA WMEM    RMEM Description 

NOP 0 0 0 0 Null Operation. 

WRS 1 0 1 0 

Write Special Register: The 10 least-significant bits of the 
ED bus specify the address of the LANai special register to 
write. The 32 most-significant bits of the ED bus specify the 
data to be stored into the register (special registers have at 
most 32 data bits). 

WRM 0 0 1 0 

Write Memory: The 64 ED bits specify the data to be stored 
into the memory location pointed to by the LANai LBUS Ad- 
dress Register (LAR). The EWE bits enable writes into their 
corresponding bytes within the 64-bit word. The LAR is incre- 
mented by 8, and the LBUS Access Counter (CTR) is decre- 
mented by 8. 

RDS 1 0 0 1 

Read Special Register: The 10 least-significant bits of the 
ED bus specify the address of the LANai special register to 
read. A 64-bit word, with its most-significant 32 bits equal to 
the value of the special register, and its least-significant 32 bit 
undefined, is written into the FIFO. If the FIFO is full, the 
value written into it is lost. 

ROM 0 0 0 1 

Read Memory: The 64-bit value of the memory location 
pointed to by the LAR is written into the FIFO. The LAR 
is incremented by 8 and the CTR is decremented by 8. If the 
FIFO is full, the value written into it is lost. 

START 0 1 0 1 

Start Read DMA: This command instructs the LANai to 
fetch the block of data starting at the memory location pointed 
to by the LAR and of size specified by CTR, and write it into 
the FIFO. The LAR is incremented by 8 and the CTR is decre- 
mented by 8 as each 64-bit word is read from the memory. The 
LANai guarantees that the FIFO is not overwritten. No EBUS 
command (except for NOP and STOP) may be issued while the 
read DMA is going on. 

STOP 0 1 0 0 
Stop Read DMA: This command instructs the LANai to stop 
any pending Read DMA and flush the FIFO. 

E2L 1 1 1 0 

Start/Resume Write DMA: This command copies the value 
of E2L-LAR into LAR and the value of E2L.CTR into CTR. 
This command is typically issued when the outside circuitry 
detects that the E2LP signal has been asserted. After issuing 
this command, the outside circuitry may provide the data to be 
written into the LBUS memory by issuing a sequence of WRM 
commands simultaneously with asserting the E2LA input. 

L2E 1 1 0 1 

Start/Resume Read DMA: This command copies the value 
of L2EXAR into LAR and the value of L2E.CTR into CTR, 
and starts the Read DMA. This command is typically issued 
when the outside circuitry detects that the L2EP signal has 
been asserted. After issuing this command, the outside cir- 
cuitry may fetch the data read from the LBUS memory by 
asserting the RFIFO signal. No EBUS command (except for 
NOP and STOP) may be issued while the read DMA is going 
on. 
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Write Special Register 

CLK 

command 

EÖE 

ED 

1    V_^'    \_^'    O^'    V_J    \ 

T X 

I I 

I I 

A_ 

CLK 

command 

EÖE 

ED 

EWE 

T 

\ \ 

I 

Write Single Word into the Memory 

XZDC 
f     V 

XOO X 
3d «$ X A 

I 
I 
X 

A /    \ /'    \_ 

Write Successive Words into the Memory 

CLK 

command 

EÖE 

ED 

EWE 

T 

\ 

I 
zn 
zu OxlOOO 

»(I ,AR) 

yon. 
XOJ 

DCDC 
zzx 

ism I he 1001 

rzr 
zzr 

yooc 

yon 
xoo 

xzx 
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1 

•m\ he 101 3C 
I 

V 
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Read Special Register 

CLK 

command 

EOE 

ED 

RFIFO 

FRDY 

T 

\ 

X 
I 

I 

\ 

\ 

'^LA. 

\ 

\ 

a\io. I 3\lock cyclx (an N)>U) 

\ 

V 

£ 
3C data 

X 

7 
7 

\ 

I 
V 

■V 

A_ 

Read Single Word from the Memory 

CLK 

command 

'    V 

EOE 

ED 

RFIFO 

FRDY 

T X 

X 

YJ 

\ /    \ /    u_/    V 
XZ3C 

IX 
A 
\ 

1 
\ 

t 3\UK ninli turn 3>clock cycUs (••• N 

I 
X 

'—\_ 

>ta) 

f 
7 

I 
T 

\ 

Note: When the internal-chip clock is 1.5 or 2 times the CLK, the read-access delay is equal to 2 CLK cycles.  When the 
internal-chip clock is 3 or 4 times the CLK, the read-access delay is equal to 1 CLK cycle. 
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Read Successive Words from the Memory 

Read DMA 

Note: When the internal-chip clock is 1.5 or 2 times the CLK, the read-access delay is equal to 2 CLK cycles. When the 
internal-chip clock is 3 or 4 times the CLK, the read-access delay is equal to 1 CLK cycle. 
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E2LP and E2LA Timing 

CLK 

3C command   f\_ 

ED ^(EJ^-CTR; 
OilO 

E2LP 

E2LA 1 

\ 

I 

I      \ 

\ 

minimum '  clock cyclai 

nn 

\ 
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\ 

=z. 
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Y 

Y 

Y_ 

BUSY Timing 

CLK 

command 
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V  SI 
A or ART   V X' ■OP Y 

\^ \\ 

21 =A 

2/     ^~ =A 
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Pin I/O Description 

L2ES synch. 
I 

L2E Status Select: This pin selects if the six status pins and the SNB pin 
described next correspond to the L2E DMA (L2ES=1), or to the E2L DMA 
(L2ES=0). 

S16 synch. 
0 

Status-16: A block of 16 double-words is pending. 

S8 synch. 
0 

Status-8: A block of 8 double-words is pending. 

S4 synch. 
0 

Status-4: A block of 4 double-words is pending. 

S2 synch. 
0 

Status-2: A block of 2 double-words is pending. 

SI synch. 
O 

Status-1: A block of 1 double-words is pending. 

SC synch. 
O 

Status-C: A block of cache-line size is pending. 

SNB synch. 
I 

Status of Next Block: Some standard I/O buses (such as PCI and SBus) 
have burst-transfer modes that require that each data block be of size 2N bytes, 
starting on 2N-aligned address. 
Upon an L2E (if L2ES=1) or an E2L (if L2ES=0) command, the status pins reflect 
the size and alignment of the first available DMA block. After that, asserting the 
SNB pin requests that the status of the next available DMA block be output on 
the status pins. Please note that the LANai 5 provides no implicit synchronization 
between the block sizes output in response to SNB and the actual DMA transfers. 
This decoupling enables the outside circuitry to learn about the sizes of upcoming 
DMA blocks arbitrarily early. 
The PCI/Sbus selection and the cache-line size (for PCI), or the allowed burst 
modes (for Sbus), are written into the LANai special register BURST. Until this 
register is initialized, the default value of the BURST allows only 1-word transfers. 
The applications with Sbus-like interfaces use S16, S8, S4, S2, and SI pins. Only 
one of these pins is asserted at any time and specifies the maximum aligned block 
that can be transferred next using burst mode. 
The applications with PCI-like interfaces use SC and SI pins. Only one of these 
two pins is asserted at any time and specifies if the block is an aligned, cache- 
line-size block, or a single 64-bit word. 
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MYRINET SAN INTERFACE 

1      Pin           I/O                                                              Description 

Configuration TCLK I 

SAN Transmit Clock: This clock input sets the data rate of the SAN output 
link. A byte is sent on every transition, so, for the nominal Myrinet SAN link 
rate of 160 megabytes per second, this is an 80 MHz clock. The allowed range for 
duty cycle is 45-55%. There is no restriction on the phase of TCLK with respect 
to any other clock (including TCLK on the other end of the SAN link). 
The frequency o'f TCLK must be within lOOOppm (0.1%) of 80MHz for compati- 
bility with other Myrinet products. 

LVDD power 

SAN Low-Voltage-Driver-Supply Voltage: This pin should be connected to 
a 1.25V +/- 2% supply if it is to be compatible with other Myrinet SAN links. 
Power consumption varies with channel usage, 20mA minimum, 90mA maximum. 
If the SAN output drivers are shorted to GND, current draw can exceed 240mA. 

VTH I 
SAN Input-Threshold Reference: This reference input should be LVDD/2 
± 1%. Current draw is lpA max. 

BIAS I 
SAN Bias Reference: For 3.3V operation, this pin should be fed 1.0mA. At 
that current level, the voltage on the pin will be approximately 1.4V. A 1.87Kfi 
resistor to 3.3V supply will achieve this. 

OAH SAN 
O 

SAN Impedence Reference, High: This pin should be connected to GND 
through a 50 ohm resistor. 

OAL SAN 
0 

SAN Impedence Reference, Low: This pin should be connected to LVDD 
through a 50-ohm resistor. 

Input Channel 10-17 
ID 

SAN 
I 

SAN Input: The 8 data bits (10-17,17 most significant) and the control bit (ID) 
are transition encoded. A transition on a data bit corresponds to the value of 
1, no transition to the value of 0.  A transition on the control bit corresponds 
to the data byte, no transition to the control symbol (see Myrinet SAN Link 
Specification). 
Each of these pins have a built-in 20Kfi pulldown resistor. 

OB SAN 
O 

SAN Output Block: This output is asserted to notify the connecting output 
SAN link channel that it must stop transmitting (see Myrinet SAN Link Specifi- 
cation). 

Output Channel O0-O7 
OD 

SAN 
O 

SAN Output: The 8 data bits (O0-O7, 07 most significant) and the control bit 
(OD) are transition encoded. A transition on a data bit corresponds to the value 
of 1, no transition to the value of 0. A transition on the control bit corresponds 
to the data byte, no transition to the control symbol (see Myrinet SAN Link 
Specification). 

IB SAN 
I 

SAN Input Block:   When this input is asserted, the output channel stops 
transmitting (see Myrinet SAN Link Specification). 
This pin has a built-in 20KQ pulldown resistor. 
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Scalable, Network-Connected, Reconfigurable, 
Hardware Accelerators for an 

Automatic-Target-Recognition Application 

Introduction 

Image processing, specifically Automatic Target Recognition (ATR) in Synthetic Aperture 
Radar (SAR) imagery, is an application area that requires tremendous processing 
throughput. In this application, data comes from high-bandwidth sensors, and the 
processing is time-critical. There is limited space and power for processing the data in the 
sensor platforms or in battlefield ground stations. DoD's strong push for using 
commercial-off-the-shelf (COTS) technology, the very high non-recurring engineering 
(NRE) costs for low volume ASICs, and evolving algorithms limit the feasibility of usmg 
custom special purpose hardware. In addition, a scalable system is required as the different 
sensor platforms have different image pixel rates and different mission requirements have 
different target recognition throughput needs per pixel. 

To meet this challenge, Myricom, under DARPA funding, has developed a compact 
scalable system for high-performance implementation of the SAR ATR algorithms that 
were developed by Sandia National Laboratories (SNL). This system is based on the use 
of multiple, concurrent, specially programmed, reconfigurable computing nodes, 
interconnected by Myrinet. To achieve high efficiency, through the exploitation of the 
unique characteristics of this algorithm (e.g., operations on single bits), special FPGA- 
based computing nodes were developed by Myricom and delivered to SNL. 

In this report, we describe the ATR algorithm implementation using FPGA accelerators. 
We describe the ATR algorithm that was implemented, the implementation on a single 
FPGA, how the FPGA nodes are connected to make a scalable system, and report both 
simulated and measured performance. 

This system is a two-level computing system whose first level provides the general purpose 
infrastructure of network interfacing, message handling, mapping, initialization, etc., by 
the LANai microprocessor. Its second level provides the application-specific computing, 
which in this case is performed by the Lucent ORCA FPGA. 

The sections of this report describe: 

1. Overview of the system 
2. The computation task, as developed by Sandia National Laboratories 
3. Simulations . 
4. Adapting the algorithm to the structure of the FPGA computing nodes 
5. Data flow through the system 
6. Software functionality 
7. Hardware 
8. Performance, present and future 
9. Summary 

10. Conclusions 
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1. Overview of the System 

The general flow of information in the entire ATR system is: 

SAR 

FOA 

The sensor 

The indexing stage 

SLD driver 

Reporting 

Myrinet 
I 

SLD 
node 

SLD 
node 

SLD 
node 

First Level 

Second Level 
(FPGA, DSP, 

RISC,...) 

Figure 1: The overall ATR system 

The FOA subsystem (for "Focus of Attention") handles the image as received by the SAR 
system (after its initial digital signal processing) and identifies locations where targets might 
be. 

The SLD subsystem further checks these suspicious locations against target templates, by 
performing the SLD ("Second-Level Detection") operation. The SLD operation is 
"embarrassingly parallel", and could be performed by a multitude of various concurrent 
processing nodes which could be general purpose processors (such as Single-Board 
Computers, SBCs), or special purpose units. 

The SLD driver then reports its best matches to the reporting section of the ATR system, 
which decides what to report according to various considerations. 

The focus of the Myricom work is the SLD operation, which is checking ("correlating") 
image chips against target templates. 

Sandia's current ATR systems are based on heterogeneous two-level multicomputers, 
microprocessors and DSP chips that are linked by Myrinet in a system area network (SAN) 
configuration providing a high level of fault tolerance, scalability, and load sharing. 
Myrinet is a scalable high-bandwidth network based on highly capable network interfaces 
and non-blocking crossbar switches. The first level of computing is the general network 
interface, and the second level of computing is the ATR specific programs running on 
microprocessors (such as a 200MHz Motorola 603ev PowerPC) and DSPs (such as a 
SHARC). 

Myricom's implementation uses FPGAs for computing at the second level. 
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We have developed high-performance, FPGA-based, compact, reconfigurable computing 
nodes to perform the SLD tasks. 

We have also developed a VME-6U baseboard with an 8-port crossbar chip (Xbar8) that 
connects 4 external Myrinet links with 4 connectors for mezzanine ("daughter") boards. 
These boards are the FPGA nodes described in this report. 

Xbar8 

FPGA 
(ORCA 

40 Kgate) 

LANai4.3 

Myrinet || 
SAN link 

Figure 2: An FPGA mezzanine node (left) and a baseboard 
(right) with one node plugged to it 
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2. The Computation Task, as Developed by Sandia 

Sandia National Laboratories' (SNL) real-time SAR ATR systems use a hierarchy of 
algorithms to reduce the processing demands for the SAR images, to yield a high 
probability of detection (Pd) and a low false alarm rate (FAR). 

The first step in the SNL algorithm is a Focus of Attention (FOA) algorithm that runs over 
a down-sampled version of the entire image to find regions of interest that are of 
approximately the right size and brightness. The regions of interest are then extracted and 
processed by an indexing stage to further reduce the data stream which includes target 
hypotheses, orientation estimations, and target center locations. The surviving hypotheses 
have the full resolution data sent to an identification executive that schedules multiple 
identification algorithms and then fuses the results of the multiple identification algorithms. 

The algorithm that we have implemented, using FPGA accelerators, is an indexing 
algorithm called Second-Level Detection (SLD). It is used for finding targets in-the-clear, 
not for camouflage, concealment or deception (CC&D) scenarios. 

The SLD task is to take the extracted imagery (an image chip), match it against a list of 
provided target hypotheses, and return the hit information for each image chip consisting of 
the best two orientation matches, the degree of matching, the corresponding pixel location, 
and information about which target hypothesis gave rise to these two best matches. 

SLD is a binary silhouette matcher that has a bright mask and a surround mask that are 
mutually exclusive. The bright mask and surround mask are 32x32 bitmaps, each having 
only about 100 non-zero pixels (about 10% of these bitmaps). 
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Figure 3: The two masks that are defined for every template 
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The system has a database of target models. For each target, and for each of a few 
elevations (typically 3) of the target, 72 templates are defined corresponding to all-around 
views of the target. The orientations of adjacent views are separated by 5 degrees. 

Each template is composed of several parameters and two masks, a "bright mask" and a 
"surround mask", where the former defines the image pixels that should be bright for a 
match, and the latter defines the ones that should not. These masks are mutually exclusive. 
Being "bright" is defined relative to a dynamic threshold (to be described later). 

The FOA stage identifies interesting image chips, and composes a list of targets suspected 
to be in that chip. Having access to range and altitude information, the FOA algorithm also 
determines the elevation for that chip, without having to identify the target first. 

The FOA tasks the SLD stage to evaluate the likelihood that the suspected targets are 
actually in the given image chip, and exactly where. To do so, the FOA defines tasks for 
the SLD stage, where each task is composed of an image chip, a suspected target with its 
elevation, one or two orientation intervals, and a few parameters. 

Upon receiving these tasks, the SLD unit matches all the stored templates for this target and 
elevation and the applicable orientations with the image chip, and computes the level of 
matching (the "hit-quality"). The two hits with the highest quality are reported to the SLD 
driver as the most likely candidates to include targets. For each hit the template ID 
(specifying the target type, its orientation, and its elevation), the exact position of the hit in 
the search area, and the hit quality are provided, too. 

After receiving this information the SLD driver reports this information to the ATR system. 

The size of the bitmaps of the target-orientation templates is 32x32. 

The size of the image chips is 64x64 8-bit deep pixels. The FOA algorithms guarantee that 
the target (if any) is located in the image chip such that a 6 pixel margin around the chip is 
guaranteed not to include the target 

Hence, the area of interest in an image is 52x52 pixels. 

In a 52x52 area there are 21x21 possible places to position a 32x32 mask area 
(52-32+1-21). This defines a search-area of 21 search-rows, each 21 position wide, as 
illustrated in the following figure. 

The position (i j) in the search area corresponds to positioning the lower left comer of the 
mask over the pixel (i,j) of the image. 

Hence, 2x21x21-882 matches (of an image and a mask) have to be performed for each 
orientation that is specified in the matching task. 
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Figure 4: The relation between image chips, masks, and the search area 

We use the following notation: 

Image: 
Templates: 

Search Area: 

Performance: 

Image 
Bright Mask 
Bright Count 
Surround Mask 
Surround Count 
Template bias 
Minimal threshold 
Maximal threshold 
Minimal bright sum 
Minimal surround sum 
Shape Sum 
Threshold 
Bright Sum 
Surround Sum 
Hit Quality 
(template/sec) per node 

M(a,b) 
B(u,v) 
BC 
S(u,v) 
sc 
Bias 
THmin 
THmax 
BSmin 
SSmin 
SM(i,j) 
TH(i,j) 
BS(ij) 
SSftj) 
QOJ) 
TSN 

0...51 (or 6...57 inside of 0...63) 
0...31 

0...31 

0...20 
0...20 
0...20 
0...20 
0...20 

The right column indicates the range for both variables. 

The purpose of the first step in the SLD algorithm (called the "shape sum") is to distinguish 
the target from its surrounding background. It consists of adaptively estimating the 
illumination (energy under the bright mask) for each position in the search area assuming 
that the target is at that orientation and location. If the energy is too little or too much then 
no further processing for that position for that template match is required. Hence, for each 
mask position in the search area, a specific threshold value is computed (not one threshold 
value for the entire image nor for the entire search area). 

The purpose of the next step in the SLD algorithm is to roughly distinguish the target from 
the background by thresholding each image pixel with respect to the threshold of the 
current mask position, as computed before. The same pixel may be above the threshold for 
some mask positions, but below it for others. 
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This threshold calculation is to determine what is really a bright pixel and what is a 
surround pixel. The calculation consists of dividing the shape sum by the number of pixels 
in the bright mask (i.e., finding the average brightness under the bright mask) and 
subtracting a template specific constant (Bias). 

The pixels under the bright mask that are greater than or equal to the threshold are 
counted, and if this count exceeds the minimal bright sum (BSmin) the processing 
continues. Now the pixels under the surround mask that are less than the threshold are 
counted. If this count exceeds the minimal surround sum (SSmin) it is declared a hit. The 
quality of the hit is the average of the percent of bright and surround pixels that were 
correct. 

The 5 computing tasks {Pk, k=1...5}, for each position (i,j) in the search area (i,j«0...20), 
are: 

31   31 

Pi: The shape sum at (i,j) is: SM(i,j) = Y^B^U^M^ + U'J + v) 

K=0 v=0 

P2: The threshold at (i,j) is:   TH(i, j) =     „'j) - Bias 

where EC is the number of l's in the bright mask, and Bias is a template-specific value. 

31   31 

P3: The bright sum at (i,j): BS(U) = £XB(",v)[ M(i + u,j + v)>TH(i,j) ] 
31   31 

El 
u=0 v=0 

where [TRUE]=4 and [FALSE]-0. 

31   31 

SI 
u=0 v=0 

A valid hit is at (i j) if the 4 following conditions hold: 

31   31 

P4: The surround sum at (ij): SS(U) = ££•*(". v)[ M(i + u,j + v)<TH(iJ) ] 

TH(i,j) < THvaax. 
TH(i,j) > TH min 
BS(i,j) > BSmin 
SS(i,j)   >   SSmin 

P5: Finding and reporting the 2 valid hits with the highest hit quality. 

M   .,    \( BS(i,j)    SS(i,j ) ^ 
The hit quality is defined by   Q(i,j) = - +—zpr~ 

2 

where SC is the number of l's in the surround mask. 
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3. Simulations 

In order to verity our understanding of the SNL algorithm, we first implemented it in C, 
and ran it on a sample data set that we received from SNL. Our simulations reproduced the 
expected results received from SNL. 

Over time this algorithm simulator has evolved into a full hardware simulator and verifier. 
It also allowed us to investigate various tradeoffs without actually implementing them in 
hardware. 

This data set from SNL includes 2 targets, each with 72 templates, for 5-degree orientation 
intervals. Hence, in total we have 144 bright masks and 144 surround masks, each a 
32x32 bitmap. The data set also includes 16 image chips (each 64x64 pixels at 1 
byte/pixel). 

Given a template and an image, there are 21x21-441 matrix correlations that must 
take place for each mask. This corresponds to 21 search rows, each 21 positions wide. 
The total number of search-rows which we correlate is: 
(2*72 templates)*(16 images)*(21 (search-rows/image)/template)=48384 search-rows. 

By analyzing the results of the simulations we have learned several important lessons: 

Lesson-1: Check SS before BS 

Using the given data the simulation yields: 

Bad TH search-rows: 28841 ( 60%) 
Bad SS search-rows: 19474 ( 40%) 
Bad BS search-rows: 2 (   0%) 
Good  search-rows: 67 (   0%) 
Total search-rows: 48384 (100%) 

A bad-TH row is a row where for each j: (TH(i,j)>THmax) or (TH(i,j)<THmin). 

A bad-SS row is a row that is not a bad-TH row, and where for all j: SS(ij)<SSmin 

A bad-BS row is a row that is neither a bad-TH row, nor a bad-SS row, 
and where for all j: BS(ij)<BSmin 

Therefore it's better to check for bad-SS (i.e., if for all j: SS(i,j)<SSmin) before checking 
for bad-BS (i.e., if for all j: BS(i j)<BSmin). 
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The low rejection rate by (BS(i,j)<BSmin) is the result of TH being computed using only 
the B-mask, regardless of the S-mask.  TH(i,j) is computed exactly by the same pixels that 
are used for computing BS(ij). 

In this data set, only 67 search-rows passed all these 4 conditions (as entire rows), and out 
of their 67*21=1407 positions, only 84 passed them (as individual positions), and were 
declared as hits. 

Lesson-2: Skip zero mask rows 

Each masks has 32 rows. However, many masks have all-zero rows which can be 
skipped. By storing with each template a pointer to its first non-zero row we can skip 
directly to the first non-zero row "for free". Embedded all-zero rows are also skipped. 
But the computation to find them is hidden in the pipeline. 

The simulation tools showed that, for the template set that we have received, this 
optimization significantly reduces the range for u (see figure below). 

If the mask is B(u,v) then the range of u is its "length", and the range of v is its "width". 

This skipping works best on "short" masks (i.e., masks with a small "length"), such as on 
the mask on the left in the following figure. 

A short and wide mask A long and narrow mask 

(length) 

4~ v (width) 

Figure 5: Short (left) and long (right) masks. 

The data set has 72 template/target for 2 targets, for a total of 72*2-144 templates. Each 
template has 32 rows (of both masks) for a total of 144*32-4608 rows. Out of these 4608 
bright-rows and 4608 surround-rows there are only 2206 non-zero bright-rows and 2815 
non-zero surround-rows. 
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As expected, there are less non-zero bright-rows than surround-rows because the bright 
mask defines the body of the target, and the surround mask defines the external 
background around the target. Since the bright mask is used twice (for both TH and BS) 
whereas the surround mask only once (for SS) skipping the zero rows reduces the number 
of row operations from 4608+4608+4608=13824 to 2206+2206+2815-7227, which is 
only 52.3%, a saving of 1.9X. 

The number of "internal" zero rows of the templates, according to our data, is very small, 
only 146 internal zero rows out of 9216 mask rows. 

Lesson-3: : Skip zero mask columns 

Just as Lesson-2 reduces the range for u (along the "length" of the masks) it is possible 
also to reduce the range of v (along the "width" of the masks) by skipping zero columns. 

As seen later, our FPGA implementation works on an entire search-row concurrently. 
Hence, skipping rows reduces time, but skipping columns reduces the number of active 
elements that work in parallel, yielding no saving. Therefore, Lesson-2 is beneficial to our 
implementation, but Lesson-3 is not We benefit from short masks (regardless of their 
width) but not from long masks. 

Lesson-4: Transposing narrow masks 

In order to benefit from narrow masks (as suggested in Lesson-3) it is possible to 
transpose narrow masks and correlate them against transposed images, allowing the same 
time savings for narrow masks as could be achieved for short masks (without rotation). 

Hence, narrow masks (i.e., with a width that is smaller than their length) could be stored 
rotated, and correlated with rotated images, with the benefits of Lesson-2. If the number of 
templates that are to be matched with the image is large, the rotation task is justified. 
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4. Adapting the Algorithm to the Structure of the FPGA 
Computing Nodes 

Each computing node has a LANai4 RISC processor, 512KB SRAM, and an FPGA 
(ORCA, 40K gate), as shown in the following figure. 

Myrinet 
T inV - ... LANai4 

Ebus FPGA 
ORCA (40K) 

Lbus 

SRAM 
(512KB) 

Figure 6: The functional structure of the FPGA node 

When we designed the system, FPGA devices were optimized to support quick 
prototyping. FPGAs provide an advantage over custom chips and ASICs, because they 
can be modified quickly and at low cost after leaving the fabrication vendor. 

These FPGA devices are not well suited to realtime reconfiguration, even though it is 
possible to reconfigure them at run time. The time required to reconfigure an FPGA is a 
dead time during which no computational progress may be achieved. Hence, minimizing 
reconfiguration time during computation is a good guideline for effective FPGA use. 

Incidentally, most Myricom products contain FPGA devices which are configured once 
in their life time, before being shipped from Myricom to their users. 

Another guideline for effective use of FPGAs is to concurrently perform as many 
operations as possible. 

The use of FPGAs as compute engines allows the hardware to take on a large range of task 
parameters through reconfiguration. 

All three FPGA computing tasks (PI, P3, and P4) correlate a sliding mask with image data 
(possibly quantized by a threshold). They all need some variation of: 

G(i,j) = f^F{ B(«,v), M(i + u,j + v) ) 
u=0 v=0 

Where G(i,j) is SM(i,j), BS(ij) or SS(i,j), and B(u,v) is a bit from either mask. 
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Our design uses 21 units, <U(j), for j=0,...,20}, such that G(i,j) is computed by U(j). 
Hence, j is spread in space (concurrently, 21 times) while i, u, and v are spread in time 
(sequentially) in 21*32*32 cycles.. 

This scheme covers the entire 21x21 search area, by computing each search-row (21 pixels 
wide) in parallel. 

A simple example may help in understanding the operation. For simplicity, in this example 
the image data is of size 6x6 (instead of 52x52) where a and b range over 0...5. The mask 
size is 3x3 (instead of 32x32) where u and v range over 0...2. The search area is 4x4 
(instead of 21x21), because 4=6-3+1 (similar to 21=52-32+1), where i and j range over 
0...3. 

Image (6x6) Search (4x4) 

Mask (3x3) /f %m ^1 IIü 
!*8 %*> w. 

M m %'*» 

Figure 7: The area sizes for the given example 

+ B(0,2)*M(i+0,j+2)   + 
B(l,2)*M(i+l,j+2) 
B(2,2)*M(i+2,j+2) 

The PI computing task is to compute for (i,j=0...3): 

SM(i,j)= B(0,0)*M(i+0,j+0)   + B(0,l)*M(i+0,j+l)   . ... 
B(l,0)*M(i+l,j+0)   +  B(l,l)*M(i+l,j+1)   +  B(l,2)*M(i+l,j+2)   + 
B(2,0)*M(i+2,j+0)   + B(2,l)*M(i+2,j+1)   + 

At the first "i-sequence", for i=0, UO computes SMOO, Ul computes SM01, U2 computes 
SM02, and U3 computes SM03. 

Let's write specifically the expressions for SM(0 j), J-0...3, using a shorthand notation: 

UO: SM00=B00*M00+B01*M01+B02*M02+B10*M10+B11*M11+B12*M12+B20*M20+B21*M21+B22*M22 
01: SM01=B00*M01+B01*M02+B02*M03+B10*M11+B11*M12+B12*M13+B20*M21+B21*M22+B22*M23 
U2: SM02=B00*M02+B01*M03+B02*M04+B10*M12+B11*M13+B12*M14+B20*M22+B21*M23+B22*M24 
U3: SM03=B00*M03+B01*M04+B02*M05+B10*M13+B11*M14+B12*M15+B20*M23+B21*M24+B22*M25 

l 

Each of these expressions has 9 terms, each is evaluated and accumulated in 9 successive 
cycles as shown below: 

Cycle: 0 1 2 3 4 5 6 7 8 

i: 0 0 0 0 0 0 0 0 0 

u: 0 0 0 1 1 1 2 2 2 

v: 0 1 2 0 1 2 0 1 2 
UO: SM00=B00*M00+B01*M01+B02*M02+B10*M10+B11*M11+B12*M12+B20*M20+B21*M21+B22*M22 
Ul: SM01=B00*M01+B01*M02+B02*M03+B10*M11+B11*M12+B12*M13+B20*M21+B21*M22+B22*M23 
U2: SM02=B00*M02+B01*M03+B02*M04+B10*M12+B11*M13+B12*M14+B20*M22+B21*M23+B22*M24 
U3: SM03=B00*M03+B01*M04+B02*M05+B10*M13+B11*M14+B12*M15+B20*M23+B21*M24+B22*M25 
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When the above sequence ends, it is repeated for i-1, then i=2, and i=3. v is nested in u, 
nested in i, but parallel in j. Hence, at the second "sequence", when i=l, UO computes 
SM10, Ul computes SM11, U2 computes SM12, and U3 computes SM13. 

There are several important things to notice: 

First, all the units get the same B(u,v) at the same time. This suggests broadcasting the 
B(u,v) coefficients to all the Uj units. 

Second, the image data that is used by unit UO) at any cycle is used by the unit U(j-1) at the 
next cycle (except when v returns to 0). This suggests pipelining the pixels, M, through 
the Uj units. 

When u changes, a new set of image pixels has to be processed. This set is the next image 
row, except when u returns to 0. 

In general, when u changes, the (i+u)th row of pixels is used. 

The computing structure for implementing the above is shown in the figure below: 

Pixel (1 Byte) pipeline 

From the mask  
Broadcast (1 Bit) B00.B01 ,B02,B10  

Figure 8: The general structure with pixel pipeline and mask broadcast 

In order not to waste time while changing the rows of pixels, the pixels pipeline has the 
capability either to operate as a pipeline (aka a FIFO) or to be directly loaded from another 
set of registers. 

At everv clock cycle each Uj unit performs one operation, v is incremented modulo 3, and 
the pixel pipeline shifts by one stage (Ul to UO, U2 to Ul,...). When v returns to 0 u is 
incremented modulo 3, and the pixel pipeline is loaded with the entire (i+u)th row of the 
image. 

When u returns to 0, the results are offloaded from the Uj (using another pipeline that is not 
shown here), their accumulators are cleared, and i is incremented modulo 4. When I 
returns to 0, this computing task (PI, P3, or P4) is completed. 

The initial loading of the pixel pipeline (with an image row) is from the image-word 
pipeline that is word wide, hence 4 times faster than the image-pixel pipeline. This speed 
advantage guarantees that it will be ready with the next image row when u returns to 0. 
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4B pipeline 

Pixel (1 Byte) pipeline 

600,801,602,810,611- 
Broadcast (1 Bit) trom tne masKs 

Figure 9: The word-pipeline for initializing the pixel-pipeline 

The three computing tasks needed for stages PI, P3, and P4 are: 
31    31 

For PI: Uj has to compute: SM(i,j) = ££B(K,V)M(/ + u,j + V) 
u=0 v=0 

This is accomplished by: 

When u returns to 0:   Uj« 0 
in every other cycle:    if (B) then Uj +*= M 

where: B is the bit from the bright mask, being broadcasted, 
M is the pixel value available from the pixel pipeline. 

The following figure shows the computing structure for PI. 

M u+Lv+1 

B u,v 

Result 16  bits 

Figure 10: The computing structure for PI 
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31    31 

For P3: Ui has to compute £S(/,./) = ££ß(u,v)[ M(i + u,j + v)>TH(i,j) ]: 
«=0 v=0 

This is accomplished by: 

When u returns to 0:   Uj = 0 
in every other cycle:    if (B) then if (M >THj) then Uj++ 

where B is the bit from the bright mask, being broadcasted, 
M is the pixel value available from the pixel pipeline 

THj is TH(i,j), as computed by P2. 

The following figure shows the computing structure for P3. 

Result 

8  bits 

8  bits      8  bits 
Figure 11: The computing structure for P3 

31   31 

For P4: Ui has to compute: SS(U) = ££S(K,V)[ M(i + u,j + v)<TH(i,j) ] 

This is accomplished by: 
ii=0 v=0 

When u returns to 0:   Uj - 0 
in every other cycle:    if (B) then if (M-^THj) then Uj++ 

where: B is the bit from the surround mask, being broadcasted, 
M is the pixel value available from the pixel pipeline 

THj is TH(ij), as computed by P2. 

The following figure shows the computing structure for P4. 
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Result 

8  bits 

8 bits      8  bits 
Figure 12: The computing structure for P4 

Developing different efficient FPGA programs (or "structures") for PI, P3, and P4 is an 
interesting approach to solving this problem. At the end of each stage the FPGA device 
would be reprogrammed (or "reconfigured") with the optimal structure for the next task. 

Using this approach matching templates with images at lKHz requires reconfigurations at 
3 KHz, with each reconfiguration limited to 333 usec (or less if any computing task has 
to be performed in addition to the reconfigurations). As appealing as this approach may 
sound, it is not very practical since currently available FPGA devices have typical 
reconfiguration times of hundreds of milliseconds. 

Therefore, we resisted the temptation to perform dynamic reconfigurations. Instead, we 
designed one structure to perform all three stages. 

In all three stages there is a need to bring in pipelined pixels (M), according to the same 
sequence (v in u in i), to broadcast one bit (B) from a mask, and to modify the value of Uj 
as a function of a certain pixel (M), and B. 

In PI the modification of Uj is Uj+=M which is an addition of the 8-bit pixel value M, to 
the 16-bit number Uj. In P3/P4 it's Uj++, where Uj is an 8-bit number. 

In PI the condition for this modification is the value of the B bit. In P3/P4 the condition is, 
in addition to the B bit, also the comparison of M with THj. Since THj does not depend on 
u and v, it's a constant until the next change of i. 

The modification of Uj is simpler in P3/P4 than in PI, but the evaluation of the condition 
for modification is simpler in PI than in P3/P4. 

This suggested that the total complexity is about the same in PI and in P3/P4 and suggested 
a path to commonality. 

An important observation was that adding an 8-bit number to a 16-bit number is the same 
as adding two 8-bit numbers, M and UjL (L for "low"), and conditionally incrementing 
UjH (H for "high") if the addition overflows. 
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This suggests that each stage needs a conditional 8-bit counter, and an 8-bit adder for either 
adding the pixel M to UjL or for comparing M with THj. This operation is conditional on 
the mask (B-l). 

Both P3 and P4 evaluate exactly the same condition ~ comparing M with THj (except that 
P3 counts if the overflow is 0 and the P4 if it's 1). Therefore they can share a single 
comparison. This suggests that we perform both P3 and P4 at the same time. We call this 
combined operation P34. 

The FPGA real estate required to perform both P3 and P4 at the same time is less than 
twice the real estate required for each separately. They share the distribution of M and THj, 
and the 8-bit adder, but each requires its own broadcast of B (because P3 needs the bright 
mask whereas P4 needs the surround mask), and each requires its own 8-bit counter. 

Hence, the structure of Uj (see following figure) requires an 8-bit adder with the inputs M 
and RO, whose result is conditionally loaded into RO and two 8-bit counters, Rl and R2. 

8  bits 

P1 results: 
P34 results:   SS 

Figure 13: The structure for computing both PI and P34 
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The use of the 8-bit registers: 

Phase:        Pi EM 
RO-register: UjL -TH(ij) 
Rl-counter: UjH BS(ij) 
R2-counter:   SS(ij) 

Conditions for update: 

In PI: increment Rl if (B=l) AND (the 8-bit addition of M to RO overflows). 
In P34: increment Rl if (B=l) AND (the 8-bit addition of M to RO overflows) 

increment R2 if (S=l) AND (the 8-bit addition of M to RO does not overflow) 

The results of PI are (R0.R1) and of P34 are (R1,R2). 

This approach reduces the number of cycles needed to perform PI, P3, and P4 from 
3*32*32*21*21 operations to 2*32*32*21 (31.5X improvement). 

Above, we described in detail the tasks PI, P3, and P4 that are performed by the FPGA. 
There are two additional computing tasks, P2 and P5, that are performed by the LANai on 
the computing node. 

P2 computes the threshold, TH(i,j), by dividing the shape sum, SM(i,j), that was 
computed by the FPGA, by a constant (BC, the number of 1 's in the bright mask) and 
subtracting another constant (the Bias). 

The values of Bias, BC, SC, THmax, THmin, BSmin, and SSmin are contained in the 
templates. 

The total number of additions for PI, P3, and P4 is 3*32*32*21*21. P2 uses only 
21*21 divide+add operations. 

Since the duty cycle of P2 is only 1/(3*32*32) of the entire FPGA operation, our first 
approach was not to dedicate any FPGA real estate to this division and to have it 
performed by the LANai. 

After the FPGA completes the task P34, the LANai has to perform task P5, which includes 
finding the two matches with the highest hit quality, and forwarding the results, according 
to the architecture that is used (as described in the following section "The data flow through 
the system"). 

The hit quality is defined by Q(i,j) - (BS(i,j)/BC + SS(i,j)/SC) / 2 where SC is the 
number of l's in the surround mask. 

Since typically BC and SC are similar in value (about 100) the LANai on the computing 
node estimates Q(i,j) by BS(i,j)+SS(i,j) for ordering purposes, and leaves the exact 
computation of Q(i,j) to the software that runs on a more capable system. 
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5. Data Flow through the System 

The core of the SLD task is to compare an image with a set of templates to find a best 
correlation, or match. We have seen that the FPGA can effectively perform the 
computations that are necessary to correlate a single image with a single template. The next 
question is: how best to partition the task of correlating many images with many templates 
over an array of FPGA nodes. 

In this section we discuss several data flow topologies that may be implemented on top of 
an arbitrary physical Myrinet topology. 

We have implemented three methods for distributing this task over the nodes. The biggest 
difference between these designs is how messages flow through the system and what these 
messages consist of. We will refer to these designs as architectures Al, A2 and A3. These 
are just a few of the myriad topologies that could be used. 

5.1 Design A1 

In Al, each FPGA node works independently (of the other nodes) to find matches. Each 
node contains a complete set of templates. The host will give each node a match task 
(consisting of an image and ranges of templates to correlate the image with), and the node 
will find the best two matches and return the answer to the host The host will keep the 
nodes well supplied with match tasks. 

The communications resemble spokes emanating from a central hub (see the figure below) - 
note that the spokes represent lines of bi-directional communication (match tasks from the 
host to the nodes, best matches from the nodes to the host). There is no communication 
between the FPGA nodes, only between the nodes and the host. 

This architecture is fault tolerant with respect to node failures - if the host does not hear 
from a node it can easily resend the match task to another node, and continue to find 
matches with the remaining nodes. Also, the FPGA nodes can be kept well supplied with 
tasks - as each node finishes a task it can be given another - resulting in a high utilization of 
the compute nodes. 

At the 
Host 

FPGA 
nodes 

Figure 14: Al, communication is between the host and each node. 

In this architecture each node stores all the templates. 
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5.2 Design A2 

A2 partitions the task by distributing the templates over the nodes which are arranged in a 
chain. Images and their current best matches are passed down the chain from node to node 
as each node finishes matching an image against the node's subset of the templates. The 
two best matches so far are passed along with the image and then returned to the host by 
the last node. 

A2 is shown in the following figure, where arrows indicate the direction of data flow. 
Flow control messages travel in the opposite direction. 

At the 
Host 

FPGA. 
nodes 

Figure 15: A2, communication along a ring 
The data that is being passed is the same throughout the ring; it contains an image, the 
match specifications (for example, which templates should be correlated with the image) 
and a description of the two best matches so far. Because match tasks are likely to require 
that images be compared against consecutive templates, and we wish to balance the 
computation task across the nodes, we would distribute the templates so that node i out of 
N nodes has templates (i, i+N, i+2N...). 

Each node would store about T/N templates, where N is the number of nodes and T is the 
total number of templates. 

The advantage of A2 over Al is that it is more scalable with respect to the number of 
templates. If the template set is very large, each node is Al may not be able to store all the 
templates. Also, if the number of nodes in the system is quite large, A2 requires simpler 
bookkeeping on the host (since all messages come from one node, and the match tasks are 
naturally queued in the system). However, in A2 if one node or link is lost or becomes 
faulty, the nodes must re-route the match tasks, redistribute the templates of the "lost" node 
and then check the image against these templates. Dynamic load balancing is not optimal 
because, even if the same number of templates have to be matched by each node, the 
amount of work that each node has to do varies, and a node that is momentarily 
overwhelmed may create idle nodes downstream. 

5.3 Design A3 

A3 combines features from Al and A2 (see figure below). The host may communicate with 
some rings of nodes (of various sizes) as well as some independent nodes (equivalent to 
rings of size 1). This hybrid approach would combine the best of both architectures and 
allow users to customize their system to fit their needs. For example, if the user had 
different classes of templates (one for matching tanks, another for planes, etc.) then 
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creating a ring of nodes for each class would enable the algorithm to quickly match an 
image against all templates of one class. Also, using multiple rings would provide better 
fault tolerance than a single ring - if one node is lost, only one ring (and some percentage of 
the total nodes) will be affected. 

An example of A3 is shown in the following figure, where FPGA nodes 1 through n are in 
one ring, nodes (n+1) through (N-l) are in another ring, and node N operates 
independently. 

At the 
Host 

FPGA 
nodes 

Figure 16: A3, with three rings 
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Another topology is shown below. It is a variant of A3, with several identical rings. It has 
3 rings that are used in parallel, arranged as a 4-stage trellis to increase their fault tolerance, 
and to improve the dynamic load balancing. 

At the 
Host 

Figure 17: A trellis consisting of 3 parallel identical rings 
All nodes in a column, have the same templates set Upstream flow control messages are 
used. 
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5.4 Example 

We include an example which illustrates how the optimal number of nodes per ring may be 
determined. In this example we consider having only one target type, such that all rings 
must have all the templates. 

M match/sec are required. Each node can perform only m match/sec. 

T templates are required. Each node can store only t templates. 

The number of nodes must be greater than both NP=M/m and NS=T/t ("P" for processing 
and "S" for storage). 

The total number of nodes in the system must be at least NP. 
The total number of nodes in every ring must be at least NS. 

R rings may be used, where R<int(N/NS) with at least NS nodes in each ring. 

For example, let us suppose that there are 23 nodes. 1000 match/sec are needed. Each 
node can do only 100 match/sec. 200 templates are needed. Each node can store only 40. 

NP - 1000/100 - 10, and NS - 200/40 - 5. 

N is greater than both NP and NS. (Hence, we can meet the requirements!) 

Up to R - 23/5 - 4 rings may be used. 

If 4 rings are used, each may have at least 23/4=5 nodes (e.g., 1 ring with 5 nodes and 3 
rings with 6 nodes). 

If only 3 rings are used, each may have 23/3-7 nodes (e.g., 1 ring with 7 nodes and 2 
rings with 8 nodes). 

5.5 Summary 

In summary, we have presented three data flow designs. In Al, each node works on 
matches independently. Al is fault-tolerant, and the FPGA nodes are well-utilized. 
However, Al does not scale well to large numbers of templates because each node must 
store all the templates. A2 places all the nodes in a single communication ring. A2 scales 
well, but it is less fault tolerant than Al, and nodes may not always have work to do. A3, a 
hybrid of Al and A2, consists of placing the nodes in numerous rings. A3 also scales well 
and is more robust to failures than A2 (but not as robust as Al). In A3, nodes could at time 
have to wait for work (as in A2). 

A multi-stage mesh topology is also presented which illustrates the flexibility of the 
physical network used in the system. 
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6. Software Functionality 

6.1 Introduction 

The software provided by Myricom runs on a host machine and on the FPGA nodes. As 
shown in the figure below, the Myricom consists of four firmware components (labeled A, 
B, C and D). These four components run concurrently on the host processor, the host's 
LANai, the FPGA node's LANai and the node's FPGA, respectively. 

Myrinet 

Host (SPARC) 

SNL's 
SLD 

SLD 
Driver 

Sbus Myrinet 
Interface 
(LANai) 

FPGA Nodes 

Myrinet 
Interface 
(LANai) 

Ebus FPGA 
(ORCA) 

SLD    A B C D 
Figure 18: Software configuration (SLD by SNL; A,B,C,D by Myricom) 

On the host machine, A resides on the Sparc and communicates with Sandia's SLD 
software. Component A also communicates over the SBus with B which resides on the 
host's LANai and is responsible for sending and receiving messages over the Myrinet link. 

On the FPGA node, C runs on the LANai, and D runs on the ORCA FPGA. 

6.2 Initialization 

When an FPGA node is powered up, the ORCA initiahzes itself, using data from the 
EEPROM with D* that loads the LANai's SRAM with an initialization program, C*. This 
program has very limited functionality: it can respond to mapping messages, and it can 
handle boot messages from a host. 

With C* installed, the network can be mapped, and the FPGA nodes can be identified. 
To map the network, A loads the host's LANai with B*, a mapping program. 
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6.3 Interfacing with the SLD code 

After the hardware powerup of the FPGA nodes, any further processing done by the 
Myricom firmware is as a result of calls made by the Sandia SLD software to the following 
functions (which are all in A): 

fpga_init_node_infoO; 
fpga_load_template(); 
fpga_send_templates(); 
fpga_calc_sld(); 

When SLD calls fpga_init_node_info(), it sets off the following set of events. First, the 
LANai on the host is loaded (by A) with B, which begins execution by sending a boot 
message to each of the remote nodes. This boot message contains new software for the 
LANai on the node (C) and may also contain software to configure the FPGA (D). The 
LANai on the FPGA node (still using C*) replaces itself with C, which then loads the 
FPGA with D, and then waits for further messages. All FPGA nodes receive identical 
software (consisting of C and D). 

Next, A uses B to send each FPGA node the source route for its "next" node (i.e., where it 
should send its answers). The choice of the next node depends on the design used (Al, 
A2, or A3). 

After the FPGA nodes have been loaded, SLD calls fpga_load_template() once for each 
template that it wishes the nodes to remember. 

For each template, the software on the host (A) stores the following data provided by SLD: 

- bright mask B(u,v) for u,v-0...31 
- surround mask S(u,v) for u,v-0...31 
- template number 
- bias Bias 
- niinimum threshold value THrnin 
- maximum threshold value THmax 
- minimum bright sum value BSmin 
- minimum surround sum value SSmin 
- bit count of bright mask BC 
- bit count of surround mask SC 

In addition, component A calculates and stores several other values including: 

- first non-zero row of either the bright or surround sum 
- bitmap that indicates which rows in the bright mask are all-zero 
- minimum shape sum value SMmin 
- maximum shape sum value SMmax 

Next, SLD calls fpga_send„template() which causes the templates to be sent one at a time 
to the software running on the nodes. (Depending on the data flow design being used, 
either all the templates will be sent to all the nodes (under Al), or some subset of the 
templates will be sent to each node (under A2 or A3)). Now the FPGA nodes are ready to 
receive match requests. 
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Finally, SLD will call fpga_calc_sld().When this function is called, SLD provides a pointer 
to the image, one or two ranges of template configurations to correlate the image with, and 
a pointer to where the answer should be placed. 

As a result of the call to fpga_calc_sld(), a match task will be sent to a node. For Al, the 
match will be computed at that node and an answer sent back to the host; for rings of nodes 
as in A2 or A3, the match will continue on from the first node to all the other nodes in the 
ring and then back to the host. 

Once the answer is returned to the host, component A places the best two matches in the 
location specified by SLD in the fpga_calc_sld() call, and returns. 

Note that these software interfaces were designed to closely mirror the interfaces that the 
SLD code had with existing software. 

6.4 Design details 

From the perspective of an FPGA node, the difference between Al and A2 or A3 is very 
slight. All the nodes are given return routes to use when handing off results (and the nodes 
don't know nor do they care if this route is to the host or to another node). In Al, each 
node will be given the complete set of templates whereas in A2 and A3 each node will 
receive a subset - but to the node this just changes the number of comparisons it must 
perform. 

In Al, the data sent from the host to a node consists of the match task; the data sent from 
the node to the host contains only the two best matches (i.e., the answer). 

In A2 and A3, the data sent from the host to the first node, the data sent between the nodes, 
and the data sent from the last node to the host are all identical in structure and consist of 
the match task and the two best answers so far. When the match task comes back to the 
host it has passed through all the nodes and the two best answers so far will in fact be the 
two best matches of the image with all the specified templates. We could use this data 
structure for Al as well (note that combining the incoming and outgoing messages for Al 
results in the message used for A2 and A3), but in order to keep Al 's messages as simple 
as possible, we chose not to. 

In A2 and A3 as in Al all the nodes are loaded with the same software, and for A2 or A3 
the designation of "first" node and "last" node are done by the host, and is completely 
arbitrary and is also transparent to the nodes. 
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6.5 LANai Software 

The code running on the LANai on the FPGA node, C, has numerous functions. First, it 
must handle messages received over the Myrinet This processing is: 

- if a message has been received 
- if it is a boot message (with new code to run) 

- reboot ourselves and run the new code (C and/or D) 
- if it is a mapping message 

- respond to the message with a mapping-reply message 
- if the message contains data 

- if it has a route to send data to 
- save the route for future use 

-if it has templates 
- store the templates 

- if it has a match task 
- save the image, and the data 
- place it on the task queue 

Match tasks specify ranges of templates to use. When C receives a match task it places a 
separate entry for each specified template on a queue for D to process. 

A queue entry corresponds to an image-template pair and consists of the following 
information: 

- pointers to: image, bright and surround masks, threshold, and result buffers, 
- bitmap that indicates which lines in the bright mask are all-zero, 
- the template number (used to access other template information like the niinimum 

bright sum and Bias), 
-the image id, ...... 
- flags used by the LANai to know when a match task is complete and to aid m freeing 

buffers that are no longer in use. 

Once a match task has been received and the image-template pairs have been placed on a 
data queue, the LANai's task is to ensure that this data is supplied to the FPGA at the 
proper time and with the proper pointers for processing to occur. 

Ideally the FPGA should have work to do at all times. Therefore, one of the most 
important jobs that the LANai on the FPGA node has is to keep the FPGA supplied with 
work. Recall that there are two tasks that the FPGA must do for each image-template pair. 
First, it calculates a shape sum (PI) and then it simultaneously calculates the bright and 
surround sums (P34). There are two additional computations that the LANai must perform. 
One is to calculate the thresholds from the shape sums (P2) and the other process, P5, is to 
calculate the two best matches and to report this to the host (or to the next node). 
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In addition to these computing processes (P2 and P5) the LANai also has a management 
process, PO, responsible for handling all incoming match tasks. 

While the FPGA is working on task PI or P34, the LANai on the FPGA node can be 
working on P2 or P5. The software on the LANai supports this by providing four queues 
for the four tasks (PI, P2, P34, P5). 

The diagram below shows the flow of one image-template pair as it passes through the 
various processes and queues on the FPGA node. 

LANai Tasks (C) FPGA Tasks (D) 

Receive *^(^prT\ ..„ 
match \ZS,K\^__^L^P^ 

over Myrinet                    *^ Ql 
^^ v Compute 

T   PI ^)sM(ij) 

^^«■" 
Q2 ^SM(ij) 

Compute f    ~N-*r 

THÖjTÄi Q34 
^^-^^^~~*\ 

Find+Report (^ZT^f^ 
"^2 Best Hits V rD J 

Q5 
^Z^^\) Compute 

^CM             BS(ij), SS(ij) 
SS(ij) 

Figure 19: Data flow through the tasks and queues on the FPGA node. 
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Ideally, the FPGA should be kept well supplied with tasks, and any time that the FPGA is 
busy with a task (PI or P34), the LANai should also be busy with a task (P2 or P5). The 
code on the LANai to support the processing shown in the figure has the form detailed 
below: 

- if data on Q34 AND fpga_busy is FALSE 
- dequeue data off Q34 
- send data to fpga to perform P34 
- set fpgajjusy to TRUE 
- set current_task to 34 

- else if data on Ql AND fpgajrosy is FALSE 
- dequeue data off Ql 
- send data to fpga to perform PI 
- set fpga_busy to TRUE 
- set current_task to 1 

-if data on Q5 
- dequeue data off Q5 
- analyze data for two best hits (P5) 
- if this match task is completed (i.e., last template of a set) 

- send answers to host or next node (P5) 
-else if data on Q2 

- dequeue data off Q2 
- divide elements from fpga result (P2) 
- queue data on Q34 

-if fpgajrosy is TRUE 
- if FPGA is done (indicated by a set WAKE bit) 

- set fpga_busy to FALSE 
-if current_task is 1 

- queue data on Q2 
- if current_task is 34 

- queue data on Q5 

By using this design with four queues, the image-template pairs flow easily through the 
four computational tasks. 

The processes are independent and Q34 is checked before Ql, and likewise Q5 before Q2, 
so that we complete ongoing image-template matches before starting new ones. 
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Another interesting way to look at the data flow is to see what the LANai and FPGA are 
doing at any given time (see the table below). Because the FPGA can only perform one 
task at a time (either PI or P34) and likewise the LANai can only perform one task at a time 
(either P2 or P5), any column in the table can have at most 2 entries - one indicating on 
which image-template pair the FPGA works and one on which pair the LANai works. 

time slot: 0 1 2 3 4 5 6 7 8 9 

process:   | 
FPGA PI   I 0 1 2 3 4 5 

LANai P2   | 0 1 2 3 4 
FPGA P34  | 0 1 2 3 
LANai P5   | 0 1 2 i 

Figure 20: task and image-template pair versus time slot. 

At time slot 4, for example, the FPGA is performing task PI for image-template pair #2, 
and the LANai is performing task P5 for pair #1. 

The time to perform each of these processes may vary for each template and each template 
location due to the early-outs employed at each step of the correlation process. The time 
slots in the table above would be determined by the time taken by the slower of the two 
processes at work. 

Ideally, we would like the FPGA to never have to wait for more data - that is, we would 
like the combined time to do P2 and P5 (the computations done by the LANai) to be less 
than the combined time taken by the FPGA to perform tasks PI and P34 (meaning that the 
LANai would always be waiting for the FPGA with more data for it to work on). 

Currently, the processing on the LANai is a bottleneck and if we could speed up the time 
taken for P2 or P5 (by moving some of the processing to the FPGA or the host machine), 
then we could speed up the total processing time. Recall that the process P2 is a division by 
a constant (BC) and subtraction of another constant (Bias) - a natural job for the FPGA. 
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7. Hardware 

7.1 Structure 

The hardware for implementing this system consists of FPGA nodes and baseboards. 

The structure of the FPGA nodes is shown below. 

EEPROM 

FPGA 
(ORCA) 

nz: 
Myrinet SAN 
Connector 

'—pooting 
FPGA 

— 80-pin 
Microstrip 
Connector 

Figure 21: The structure of FPGA nodes 

The baseboard, which supports 4 FPGA daughter boards, is a VME-6U board whose 
structure is shown below. 

11 
Myrinet SAN 
front panel 
connector 

FPGA 
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FPGA 
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P2-VME 
backplane 
connector 

FPGA 
node 

FPGA 
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PO-VME 
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TT 

P1-VME 
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connector 
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Figure 22: The structure of the baseboard for 4 FPGA nodes 

124 



The following figure shows the actual hardware and the placement of its components. 
It shows a baseboard, with one (out of possible four) FPGA node plugged into it, and the 
other side of another node. 

««.,    «     .1     ii   ■   ♦     MyrinetSAN       LED Myr.net SAN    8-port     Myrmet staUjs 

connectors    Switch SAN cable    connector      display 

Clocks 

SRAM 

LANai 
FPGA 

(ORCA) 

80-pin Microstrip 
Connectors      MICTOR    P2 - VME 

(e.g., for optional connectors backplane 
DRAM) (blank)     connector 

PO-VME P1-VME 
backplane backplane 
connector   connector 

SRAM 

Booting 
FPGA 

EPROM 

EPROM 
programming 

contacts 

Figure 23: A picture of the baseboard with two FPGA nodes 

This system is a two-level computing system whose first level provides the general purpose 
infrastructure of network interfacing, message handling, mapping, initialization, etc., by 
the LANai microprocessor, and second level provides the application-specific computing, 
which in this case is performed by the ORCA FPGA. 

7.2 Initialization 

Each of the FPGA nodes could be operated as a self-contained node. At powerup time 
both the computing FPGA (the ORCA) and the booting FPGA on each node initialize 
themselves using data from the EEPROM. Then, the ORCA uses data from the EEPROM 
to load the SRAM of the LANai with its initial program, the C* mentioned in the 
initialization section of the discussion of the software functionality. 

Once this C* program is loaded, the LANai gets out of its RESET mode, and starts 
executing that program. From then on, the booting FPGA is waiting for commands from 
the LANai to reconfigure the computing FPGA, as needed (e.g., with D for ATR). 

In our system, this LANai program, C*, depends on programs in the hosts to "program" 
the FPGA (by providing its configuration data, D) and to replace this C* by the runtime 
software C Loading the FPGA in this manner is done because this is a research and 
development project, and should be capable of supporting future evolutions as will be 
required by Sandia. 

125 



In a production system, the runtime software could be loaded directly from the EEPROM. 

7.3 The Hardware 

Each node has: 
LANai4.3 RISC processor, 40 MHZ, 3.3V 
Lucent ORCA FPGA with 40K gates, 3.3V, speed grade 3 
SRAM, 512KB 
Booting FPGA 
EEPROM 

The baseboard (M2M-VME-FB4) has: 
Xbar8, 8-port switch 
Micro-controller 
LED 

Four switch ports are connected to the four FPGA nodes (ports 1,2,5,6). Two other ports 
(ports 0 and 4) are connected to a SAN connector on the front panel, and the remaining two 
ports (ports 3 and 7) are connected to a P0 connector that is plugged into the VME 
backplane. 

This arrangement allows dedicating a link to each node, accessing all nodes from any single 
link, or any combination in between. (In the ATR application the link bandwidth is low 
enough such that using one external link for all 4 nodes does not slow down the operation.) 

Each daughter board is connected to the baseboard using two connectors, a Myrinet SAN 
connector (AMP's 40-signal microstrip connector) and an AMP 80-signal microstrip 
connector. Having a Myrinet SAN connector allows direct connection of the board to 
Myrinet SAN cables, should the need arise. The other connector links the ORCA with a 
slot on the baseboard for a Mictor connector that could be used for connecting additional 
daughter boards, such as for additional FPGA nodes or DRAM SIMMs. 

The only use of the 80-signal connector on our nodes is to communicate between the 
node's ORCA and a microcontroller on the baseboard, which controls the LED display. 
This LED, visible on the front panel, is used to indicate the status of the system (such as to 
show which nodes are running). 

The FPGA daughter boards also have contacts for (re)programming their EEPROMs. 

A typical VME-6U 19" subrack can house 21 boards. 16 of these may be M2M-VME-FB4 
baseboards, connected to 5 M2M-VME-SW10 (or M2M-VME-SW12) as shown below. 
This arrangement yields 64 FPGA nodes in one 6U subrack. 

At the conservative estimate of only 1,500 TSN, i.e., 1500 (template/sec)/node, this 
arrangement yields 96,000 (template/sec) per 6U-subrack that has only 16 baseboards. 

By using the backplane links (over P0) with backplane (or bulkhead) switching, 
21 baseboards with 84 FPGA nodes could fit into a single 6U subrack, yielding 
126,000 (template/sec) per 6U subrack. 
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21 slot VME subrack 

M2M-VME-FB4 
baseboard with 4 

FPGA nodes 

M2M-VME-SW10 

Figure 24: 64 FPGA nodes in a 21 slot VME-6U subrack, 
using front panel links 

If so desired, we can change the form-factor of the FPGA nodes such that 8 of them would 
fit on a single baseboard that would be redesigned both for handling the new form factor of 
the nodes and their increased number, either by using two Xbar8 or a single Xbarl6. 

This would double the number of computing nodes per subrack to 128 or 168, depending 
on the use of front panel or backplane switches. 
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8. Performance (Present and Future) 

8.1   Test Setup 

The test and measurement setup is as shown in the following figure, where 

Host Machine: 
Host Interface: 
Switch: 
FPGA Node: 

SparcStation 

Sparc 
Station 

IPX 
SunOS 

M2F 
Sbus 

Myrinet 
interface 

LAN / 
Link \ 

SparcStation IPX running SunOS 4.1.3 
Myricom M2F-SBus32B board with 512K memory 
Myricom M2FM-Switch8 switch 
LANai4.1 running in 3.3-4V at 40Mhz 
ORCA FPGA 40K operating on 3.3V supply 

FPGA Node 

Figure 25: FPGA node test setup 

The following measurements were made using the above hardware setup and customized 
software designed to accurately test the performance of the FPGA nodes, with minimal 
software overhead. 

Notation: the performance of an FPGA node is measured by the number of template 
it can match in a second, written as TSN for "(templates/sec)/node'\ 

8.2 Performance Without Optimizations (estimated and simulated) 

Assuming no optimization, the number of cycles to perform each operation is given below. 

PI (shape sum): ll+8+(32*32+17)*21- 21,880 (cycles/template)/node 
P34 (b/s sum): ll+(8+8+32*32+17)*21 - 22.208 fcvcles/templateVnode 
Total FPGA calculations 44,088 (cycles/template)/node 

At 40MHz, a cycle takes 25nsec, hence 44088*25ns-l.102200 msec/template 

1/(1.1022 msec/template) - 907 TSN 

Without any further optimizations, this FPGA system can deliver -907 TSN. 

This figure was verified by using the ORCA simulator. 
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8.3 Skipping Zero-Mask-Row (estimated) 

The ATR algorithm implemented in the FPGA nodes can take advantage of the sparseness 
of the templates. While computing PI and P34 the FPGA algorithm will skip all-zero rows 
of the template. 

The number of mask rows in 72 actual templates for each of 2 targets is 72*2*32=4608. Of 
these, there are 2206 non-zero bright-rows and 2815 non-zero surround-rows. 

The non-zero bright-rows are 2206/4608=16/32 of the total. 

The non-zero surround-rows are 2815/4608=20/32 of the total. 

Using these ratios the cycle count is reduced to: 

PI (shape sum): ll+8+(32*16+17)*21 - 11128 (cycles/template)/node 
P34 (b/s sum): 11+(8+8+32*20+17)*21 = 16832 fcvcles/templateVnode 
Total for the FPGA computations = 25272 (cycles/template)/node 

At 40MHz 25272 cycles/template correspond to - 1583 TSN. 

This is a 1.75X improvement over the non-optimized performance. 

This performance can be achieved only if the FPGA is the pacing process (aka the 
"bottleneck"), which occurs if the LANai performs its computing tasks (P2 and P5) faster 
then the FPGA performs its tasks (PI and P34). 

8.4 Skipping Zero-Mask-Row (measured) 

This skipping of zero mask rows was implemented in the FPGA firmware, and the 
performance was measured. 72 templates were matched with one image. This was 
repeated until 10000 matches were performed. 

• When the division of P2 was done by the LANai while the FPGA was processing 
either PI or P34, the performance measurements were less than the expected average. 

Average time/template: 0.9725 msec, corresponding to ~ 1028 TSN. 

• Next, changes were made to the LANai software in the FPGA node to improve the 
performance by spreading the 21 divisions (for each search row) between P2 and P5, 
such that they required more balanced periods. 

Average time/template: 0.76016 msec, corresponding to - 1316 TSN. 
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•    Since the division in the LANai is the bottleneck, it should be moved to the FPGA. The 
entire P2 task (the division and the subtraction of the Bias) should be performed by the 
FPGA, concurrently with other operations without slowing it. To estimate the resulting 
performance the following measurement was taken after turning off the division in the 
LANai (P2), simulating the performance as if the FPGA were performing the division. 

Average time/template: 0.6305 msec, corresponding to - 1586 TSN 

This matches the estimated performance of 1583 (templates/sec)/node. 

By moving the entire P2 task to the FPGA, the performance should be higher than the 
measured 1586 TSN (which was achieved by a partial move of P2 to the FPGA). 

8.5 Transposing Narrow Masks (future, estimated) 

As outlined in Section 3 under Lesson 4, if a template is narrow, it is possible to transpose 
it and correlate it against a transposed image. 

The following is the performance calculation using the same templates (transposed, 
off line, whenever needed for optimization). 

PI (shape sum): ll+8+(32*12+17)*21 - 8440 (cycles/template)/node 
P34 (b/s sum): ll+(8+8+32*18+17)*21 - 12800 fcvcles/templateVnode 
Total FPGA calculation total - 21240 (cycles/template)/node 

Transposing images may be performed by a straight char-char copy: 2704 read cycles and 
2704 write cycles - 5408 cycles/image. The host can also send both the original and the 
transposed images. 

Transposing the image has to be done only once for many sets of templates (72 templates 
for each target). 

If the LANai on the FPGA node transposes the image, the cost to transpose should be 
divided by the number of templates that are to be checked. Therefore, the image overhead 
is probably on the order of 100 cycles per template. 

At 40MHz 21340 cycles/template correspond to - 1874 TSN, a 1.14X improvement. 
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8.6 Skipping Invalid Threshold Lines (future, estimated) 

If all the threshold values for an entire search-row are invalid (i.e., each is either below 
THmin or above THmax) then there is no need to perform P34 on that row since no hit 
found in that row can be valid. 

Our data has: , 
(2*72 templates)*(16 images)*(21 (search-rows/image)/template)=48384 search-rows. 
Of these rows, only 19543 have valid thresholds, or 40%. 

With no optimizations we had: 

PI (shape sum): 11+8+(32*32+17)*21 = 21880 (cycles/template)/node 
P34 (b/s sum): 1l+(8+8+32*32+17)*21 - 22208 (cycles/templateVnode 
Total FPGA calculation - 44088 (cycles/template)/node 

At 40MHz, 44088 cycles/template correspond to - 907 TSN 

If invalid-threshold search rows are skipped then we have: 

PI (shape sum): 11+8+(32*32+17)*21 - 21880 (cycles/template)/node 
P34 (b/s sum): 11+(8+8+32*32+17)*21*0.40 -       8880 fcvcles/templateVnode 
Total FPGA calculation- 30760 (cycles/template)/node 

At 40MHz, 30760 cycles/template correspond to - 1300 TSN, a 1.43X improvement. 

8.7 Performance Summary 

8.7.1   Present 

Nn optimization (straightforward, brute force) 907 TSN 
Estimated and verified by simulation. 

Skipping zero-rows: HVJBTCXT 
Measured with the initial P2 and P5 1028 TSN 
Measured with the balanced P2 and P5 1316 TSN 

8.7.2 Future 
Estimated and measured without division by the LANai 1586 TSN 
The division could be implemented by the FPGA 

Transposing masks+images 

Skipping invalid TH rows 

Total 

1.14X 

1.43X 

2585 TSN 
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8.8 Future Improvement 

The entire P2 task could be moved to the FPGA with no FPGA performance penalty. 

Moving the entire P2 task to the FPGA will simplify the entire operation by having the 
FPGA perform (repeatedly) one task only, P1234, eliminating some of the queues, and 
significantly simplifying the LANai's coordination/management chores. This will leave the 
LANai with only the much simpler tasks PO and P5, as shown below. 

LANai Tasks (C) 

Receive a 

FPGA Task (D) 

match tas 
over Myrinet 

Find+Report 
2 Best Hits 

Compute 
SM(iJ) 
TH(ij) 
BS(i,j) 
SS(iJ) 

Figure 26: Simplified data flow through the tasks 
and queues on the FPGA node 

If needed, the selection of the 2 best hits could also be moved from the LANai's P5 to the 
FPGA with no FPGA performance penalty. However, this may not scale easily to higher 
numbers of best hits. 

As long as the FPGA can keep up with the LANai it pays to move tasks from the LANai to 
the FPGA. 
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9. Summary 

The FPGA node consists of an FPGA (ORCA-40K gate) for computation, a Myrinet 
network interface (LANai4.3 and SRAM), and a small FPGA with some flash memory for 
booting. The computation FPGA has no memory directly attached to it; the computation 
FPGA must access the LANai's memory for template data and image data. The LANai has 
512KB of memory attached which is used for network message data, program space, 
template storage, and image data. A single template requires 270 bytes, and there are 72 
templates for each target configuration. The initial implementation supports 6 target 
configurations per node. Additional target configurations are supported by spreading out 
the templates amongst the processing nodes. 

The correlations are mapped to a linear systolic pipeline. A high degree of parallelism is 
exploited. In addition to computing an entire row of correlation results in parallel (21 
positions), the FPGA performs the address calculations, data loading, and correlations in 
parallel. Short inter-register paths allow the design to run at 40MHz, which is limited by 
the clock rate at which external memory can be fetched. 

In sequential implementations there are three stages of the computation, thus there is plenty 
of opportunity for reconfiguration. The first stage consists of the accumulation of 8-bit data 
into a 16-bit accumulator, the second and third stages consist of comparing 8-bit values and 
conditionally incrementing counters. In the FPGA implementation, the second and third 
stage were optimized to be performed in parallel. Instead of reconfiguration for each stage, 
there is clever design of the processing element so that it can perform all these 
3 stages, such that no reconfiguration is necessary, and hence no time is spent on 
reconfiguration instead of computation. 

The compact processing element consists of one 8-bit data input register, one 8-bit 
accumulator, one 8-bit adder/subtracter, and two 8-bit counters. 21 of these processing 
elements along with the address generator reside on the FPGA while the divide operation is 
concurrently done in software in the LANai. There are 1024 (32x32) pixel locations in a 
mask, and 21 lines in the search area, and two processing steps and some overhead (-1K 
cycles), for a total of -44000 (32*32*21*2+1000) cycles, which at 40MHz requires 
1.1msec, yielding the rate of -907 TSN. This was verified by simulations. 

Improved performance has been achieved by several additional optimizations. These 
optimizations are similar to those that microprocessors use: exploiting the sparseness of the 
templates, and stopping the computation for a given test as soon as a processing stage fails 
("early outs"). Since the correlations are in a linear pipeline we cannot exploit the 
sparseness in a given row, however it is easy to eliminate the calculation for a row if the 
template is entirely empty for that row. 

Skipping zero rows of the template yielded the measured LANai-limited performance of 
1316 TSN, which could be raised to 1586 TSN (measured) if some computing tasks were 
moved from the LANai to the FPGA. 
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To maximize this possibility, narrow templates could be transposed into short ones and 
rotated image data could be used for correlation. Another optimization is to abort the 
computation (an "early out") when an entire row does not pass the shape sum test. 

After these optimizations an FPGA node could process 2580 (template/sec)/node, if the 
data set that we received is indeed representative of the expected data, and if the LANai 
keeps up with the FPGA nodes. 

Four FPGA nodes fit on a single VME-6U baseboard. Using 1316/2580 TSN as the 
present/future performance yields the performance of 5264/10320 template/sec by 
a 6U baseboard. 

A standard VME-6U subrack has 21 6U boards, which may be all baseboards (with a total 
of 84 nodes) yielding the performance of 110500/216700 template/sec by the entire 
subrack. 

If this performance is not sufficient, we can design another form-factor for the hardware 
and populate each baseboard with 8 FPGA nodes, doubling the performance for each 
baseboard and for the entire subrack. 

Populating a subrack with 21 baseboards requires the use of switches outside the subrack. 
If it is preferred to use only switches that are internal to the subrack without using the P0 
backplane, and using only A-links, then only 16 baseboards may be used in a subrack, 
with 64 FPGA nodes only, yielding the performance of 84200/165100 template/sec by the 
entire subrack. 

Currently the bottleneck of the operation is the division which is still being done in 
software in the LANai. We could move the entire computing task P2 from the LANai to 
the FPGA, and would expect approximately 2500 TSN, yielding 210000 match/sec for a 
VME-6U subrack with 21 baseboards, each with 4 nodes. 

The performance could be further increased if one were to reimplement the design with a 
larger FPGA, even without adding more external memory bandwidth. There is at least a 
factor of 21 of unexploited parallelism since rows are processed sequentially. Most of the 
memory fetches are common to the next row of computation, however by computing 
multiple rows at the same time, the chance that the shape-sum early out will occur 
decreases. Doubling the hardware on-chip might give close to 2X performance 
improvement, but 21X hardware increase will give only around 8X performance increase 
unless memory bandwidth is significantly increased, too. 
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10. Conclusions 

In this report we have described a scalable FPGA system, not just a single accelerator node 
FPGA. This system is scalable by using an embeddable high-performance networking 
technology (Myrinet) that has programmable network interfaces. These network interfaces 
contain microprocessors for local control of the FPGA accelerators. This is an excellent 
example of two-level multicomputing where the second-level (the FPGA) can contain no 
control capability, and it is entirely dependent on the first-level (the programmable network 
interface). 

We have demonstrated a scalable FPGA system for an automatic target recognition 
application. For that application we have measured 1316 TSN and can further improve it to 
reach 1536 TSN, and possibly further to 2580 TSN, yielding 165120 or 216720 
template/sec by using a VME-6U subrack with 16 or 21 baseboards. 

This performance scales linearly with the number of nodes. The only limit to its 
scalability is the ability of the host to dispatch and handle matching tasks. 

We expect further planned design enhancements to increase the computational density 
advantage by another 33%. Even further performance advantages can be achieved by 
exploiting the remaining parallelism the design provides by using currently available, larger 
FPGA devices. 

To achieve high performance there were eight main design decisions: 

(1) use a proper system architecture (scalable); 

(2) have a proper decomposition between hardware and software, not try to execute in 
FPGAs the complex but not computationally intensive parts of modules that are best left 
to software in host microprocessors; 

(3) use dense packaging to achieve high performance for a given volume, microprocessors 
typically have a non-trivial amount of support chips; 

(4) have short inter-register paths for fast clocking; 

(5) have a design that takes advantage of high degree of parallelism; 

(6) have a design that can adapt to the dynamic variances in the data to eliminate excess 
computation, just like in microprocessor software; 

(7) do not neglect start and finish overheads; and 

(8) rninimize reconfiguration since most current FPGA devices reconfigure slowly. 

[lvl] 
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MISSION 
OF 

AFRL/INFORMATIONDIRECTORATE (IF) 

The advancement and application of information systems science and 

technology for aerospace command and control and its transition to air, 

space, and ground systems to meet customer needs in the areas of Global 

Awareness, Dynamic Planning and Execution, and Global Information 

Exchange is the focus of this AFRL organization. The directorate's areas 

of investigation include a broad spectrum of information and fusion, 

communication, collaborative environment and modeling and simulation, 

defensive information warfare, and intelligent information systems 

technologies. 


